File size: 1,955 Bytes
f763b86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
import os
import json
from model import load_vectorstore, ask_question
st.set_page_config(page_title="Simple RAG Q&A", layout="centered")
st.title("RAG Q&A with Mistral AI")
st.write("Upload a PDF and ask questions about its content.")
# PDF upload
pdf_path = "/app/data/document.pdf"
uploaded_file = st.file_uploader("Upload PDF", type=["pdf"])
if uploaded_file:
os.makedirs("/app/data", exist_ok=True)
try:
with open(pdf_path, "wb") as f:
f.write(uploaded_file.read())
st.success("PDF uploaded!")
with st.spinner("Indexing document..."):
load_vectorstore(pdf_path)
st.success("Document indexed!")
except Exception as e:
st.error(f"Failed to upload/index PDF: {str(e)}")
# Query input
query = st.text_input("Enter your question",
"How many articles are there in the Selenium webdriver python course?")
if st.button("Ask") and query:
if not os.path.exists(pdf_path):
st.error("Please upload a PDF first.")
else:
with st.spinner("Generating answer..."):
try:
result = ask_question(query, pdf_path)
st.subheader("Answer")
st.write(result["answer"])
st.subheader("Retrieved Contexts")
for i, context in enumerate(result["contexts"], 1):
with st.expander(f"Context {i}"):
st.write(context)
except Exception as e:
st.error(f"Failed to generate answer: {str(e)}")
# Query endpoint for testing
if "query" in st.experimental_get_query_params():
query = st.experimental_get_query_params().get("query", [""])[0]
if query and os.path.exists(pdf_path):
try:
result = ask_question(query, pdf_path)
st.json(result)
except Exception as e:
st.json({"error": str(e)}) |