Spaces:
Sleeping
Sleeping
File size: 5,966 Bytes
aa2bec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
import os
import zipfile
import shutil
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
# Initialize session state
if "vectorstore" not in st.session_state:
st.session_state.vectorstore = None
if "history" not in st.session_state:
st.session_state.history = []
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
# Sidebar
with st.sidebar:
st.header("RAG Control Panel")
api_key_input = st.text_input("Enter RAG Access Key", type="password")
# Authentication
if st.button("Authenticate"):
if api_key_input == RAG_ACCESS_KEY:
st.session_state.authenticated = True
st.success("Authentication successful!")
else:
st.error("Invalid API key.")
# File uploader
if st.session_state.authenticated:
input_type = st.selectbox("Select Input Type", ["Single PDF", "Folder/Zip of PDFs"])
input_data = None
if input_type == "Single PDF":
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
else:
input_data = st.file_uploader("Upload a folder or zip of PDFs", type=["zip"])
if st.button("Process Files") and input_data is not None:
with st.spinner("Processing files..."):
vector_store = process_input(input_type, input_data)
st.session_state.vectorstore = vector_store
st.success("Files processed successfully. You can now ask questions.")
# Display chat history
st.subheader("Chat History")
for i, (q, a) in enumerate(st.session_state.history):
st.write(f"**Q{i+1}:** {q}")
st.write(f"**A{i+1}:** {a}")
st.markdown("---")
# Main app
def main():
st.title("RAG Q&A App with Mistral AI")
if not st.session_state.authenticated:
st.warning("Please authenticate with your API key in the sidebar.")
return
if st.session_state.vectorstore is None:
st.info("Please upload and process a PDF or folder/zip of PDFs in the sidebar.")
return
query = st.text_input("Enter your question:")
if st.button("Submit") and query:
with st.spinner("Generating answer..."):
answer = answer_question(st.session_state.vectorstore, query)
st.session_state.history.append((query, answer))
st.write("**Answer:**", answer)
def process_input(input_type, input_data):
# Create uploads directory
os.makedirs("uploads", exist_ok=True)
documents = ""
if input_type == "Single PDF":
pdf_reader = PdfReader(input_data)
for page in pdf_reader.pages:
documents += page.extract_text() or ""
else:
# Handle zip file
zip_path = "uploads/uploaded.zip"
with open(zip_path, "wb") as f:
f.write(input_data.getvalue())
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall("uploads/extracted")
# Process all PDFs in extracted folder
for root, _, files in os.walk("uploads/extracted"):
for file in files:
if file.endswith(".pdf"):
pdf_path = os.path.join(root, file)
pdf_reader = PdfReader(pdf_path)
for page in pdf_reader.pages:
documents += page.extract_text() or ""
# Clean up extracted files
shutil.rmtree("uploads/extracted", ignore_errors=True)
os.remove(zip_path)
# Split text
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_text(documents)
# Create embeddings
hf_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={'device': 'cpu'}
)
# Initialize FAISS
dimension = len(hf_embeddings.embed_query("sample text"))
index = faiss.IndexFlatL2(dimension)
vector_store = FAISS(
embedding_function=hf_embeddings,
index=index,
docstore=InMemoryDocstore({}),
index_to_docstore_id={}
)
# Add texts to vector store
uuids = [str(uuid.uuid4()) for _ in range(len(texts))]
vector_store.add_texts(texts, ids=uuids)
# Save vector store locally
vector_store.save_local("vectorstore/faiss_index")
return vector_store
def answer_question(vectorstore, query):
llm = HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.7, "max_length": 512},
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
prompt_template = PromptTemplate(
template="Use the provided context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
input_variables=["context", "question"]
)
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=False,
chain_type_kwargs={"prompt": prompt_template}
)
result = qa_chain({"query": query})
return result["result"].split("Answer:")[-1].strip()
if __name__ == "__main__":
main()
|