samiee2213 commited on
Commit
77b20aa
·
verified ·
1 Parent(s): ab98559

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -22,7 +22,6 @@ warnings.filterwarnings("ignore", category=DeprecationWarning)
22
  # Load environment variables
23
  load_dotenv()
24
  GROQ_API_KEY=os.getenv("GROQ_API_KEY")
25
- print(GROQ_API_KEY)
26
  llm = ChatGroq(model="llama-3.1-70b-versatile")
27
 
28
  PROMPT_TEMPLATE = """
@@ -45,6 +44,10 @@ Instructions:
45
  Begin extraction.
46
  """
47
  def get_llm_response(entity, query):
 
 
 
 
48
  # Format the prompt with the entity and query
49
  formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=query)
50
 
@@ -161,7 +164,7 @@ elif selected == "Define Query":
161
  if st.button("Extract Information"):
162
  if entity and query:
163
  response_text = get_llm_response(entity, query)
164
- st.write(reponse_text)
165
 
166
  # Extract Information Section with Progress Bar
167
  elif selected == "Extract Information":
@@ -181,9 +184,6 @@ elif selected == "Extract Information":
181
  user_message = st.session_state["query_template"].replace("{company}", str(entity))
182
  formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=user_message)
183
 
184
- # Append user message to the flow history
185
- st.session_state.flowmessages.append(HumanMessage(content=user_message))
186
-
187
  # Generate response from the model
188
  response = llm([SystemMessage(content=formatted_prompt)])
189
 
 
22
  # Load environment variables
23
  load_dotenv()
24
  GROQ_API_KEY=os.getenv("GROQ_API_KEY")
 
25
  llm = ChatGroq(model="llama-3.1-70b-versatile")
26
 
27
  PROMPT_TEMPLATE = """
 
44
  Begin extraction.
45
  """
46
  def get_llm_response(entity, query):
47
+ # Ensure entity and query are not None
48
+ entity = entity or "Unknown Entity"
49
+ query = query or "Information not provided"
50
+
51
  # Format the prompt with the entity and query
52
  formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=query)
53
 
 
164
  if st.button("Extract Information"):
165
  if entity and query:
166
  response_text = get_llm_response(entity, query)
167
+ st.write(response_text)
168
 
169
  # Extract Information Section with Progress Bar
170
  elif selected == "Extract Information":
 
184
  user_message = st.session_state["query_template"].replace("{company}", str(entity))
185
  formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=user_message)
186
 
 
 
 
187
  # Generate response from the model
188
  response = llm([SystemMessage(content=formatted_prompt)])
189