Spaces:
Sleeping
Sleeping
File size: 25,522 Bytes
9dcfa9a d8796fc 98915c7 14a0aaa 98915c7 d8796fc 98915c7 9dcfa9a d8796fc 14a0aaa 9dcfa9a cfde529 9dcfa9a cfde529 14a0aaa cfde529 98915c7 9dcfa9a 96c99bd 98915c7 9dcfa9a cfde529 98915c7 cfde529 9dcfa9a 98915c7 9dcfa9a 98915c7 14a0aaa cfde529 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 d8796fc 14a0aaa 96c99bd 14a0aaa cfde529 98915c7 14a0aaa 98915c7 9dcfa9a 98915c7 2571ddf 98915c7 9dcfa9a d8796fc 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 d8796fc 9dcfa9a 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 9dcfa9a 98915c7 14a0aaa 98915c7 9dcfa9a 14a0aaa 98915c7 14a0aaa 9dcfa9a 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 9dcfa9a d8796fc 98915c7 d8796fc 9dcfa9a 98915c7 cfde529 98915c7 cfde529 14a0aaa cfde529 9dcfa9a 98915c7 cfde529 98915c7 cfde529 98915c7 cfde529 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa 98915c7 14a0aaa cfde529 14a0aaa cfde529 14a0aaa cfde529 14a0aaa cfde529 14a0aaa cfde529 9dcfa9a 82e5250 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
import os
from google.oauth2 import service_account
from googleapiclient.discovery import build
from streamlit_chat import message as st_message
import plotly.express as px
import re
import streamlit as st
import gspread
from google.oauth2.service_account import Credentials
import warnings
import time
from langchain.schema import HumanMessage, SystemMessage, AIMessage
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain_groq import ChatGroq
import numpy as np
import gspread
from dotenv import load_dotenv
warnings.filterwarnings("ignore", category=DeprecationWarning)
#google sheet
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
client = gspread.authorize(creds)
#environment
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
#session state variables
if "results" not in st.session_state:
st.session_state["results"] = []
# Initialize Google Serper API wrapper
search = GoogleSerperAPIWrapper(serp_api_key=SERPER_API_KEY)
llm = ChatGroq(model="llama-3.1-70b-versatile")
# Create the system and human messages for dynamic query processing
system_message_content = """
You are a helpful assistant designed to answer questions by extracting information from the web and external sources. Your goal is to provide the most relevant, concise, and accurate response to user queries.
"""
# Define the tool list
tools = [
Tool(
name="Web Search",
func=search.run,
description="Searches the web for information related to the query"
)
]
# Initialize the agent with the tools
agent = initialize_agent(
tools,
ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-70b-versatile"),
agent_type=AgentType.SELF_ASK_WITH_SEARCH,
verbose=True,
memory=ConversationBufferWindowMemory(k=5, return_messages=True)
)
# Function to perform the web search and get results
def perform_web_search(query, max_retries=3, delay=2):
retries = 0
while retries < max_retries:
try:
search_results = search.run(query)
return search_results
except Exception as e:
retries += 1
st.warning(f"Web search failed for query '{query}'. Retrying ({retries}/{max_retries})...")
time.sleep(delay)
st.error(f"Failed to perform web search for query '{query}' after {max_retries} retries.")
return "NaN"
def update_google_sheet(sheet_id, range_name, data):
try:
# Define the Google Sheets API scope
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
client = gspread.authorize(creds)
# Open the Google Sheet and specify the worksheet
sheet = client.open_by_key(sheet_id).worksheet(range_name.split("!")[0])
# Prepare data for update
data_to_update = [data.columns.tolist()] + data.values.tolist()
# Clear the existing content in the specified range and update it with new data
sheet.clear()
sheet.update(range_name, data_to_update)
st.success("Data successfully updated in the Google Sheet!")
except Exception as e:
st.error(f"Error updating Google Sheet: {e}")
# Function to get LLM response for dynamic queries
def get_llm_response(entity, query, web_results):
prompt = f"""
Extract relevant {query} (e.g., email, phone number) from the following web results for the entity: {entity}.
Web Results: {web_results}
"""
human_message_content = f"""
Entity: {entity}
Query: {query}
Web Results: {web_results}
"""
try:
response = agent.invoke([system_message_content, human_message_content], handle_parsing_errors=True)
extracted_info = response.get("output", "Information not available").strip()
# Clean up irrelevant parts of the response
cleaned_info = re.sub(r"(Thought:|Action:)[^A-Za-z0-9]*", "", extracted_info).strip()
return cleaned_info
except Exception as e:
return "NaN"
# Retry logic for multiple web searches if necessary
def refine_answer_with_searches(entity, query, max_retries=3):
search_results = perform_web_search(query.format(entity=entity))
extracted_answer = get_llm_response(entity, query, search_results)
if len(extracted_answer.split()) <= 2 or "not available" in extracted_answer.lower():
search_results = perform_web_search(query.format(entity=entity))
extracted_answer = get_llm_response(entity, query, search_results)
return extracted_answer, search_results
# Setup Google Sheets data fetch
def get_google_sheet_data(sheet_id, range_name):
# Define the Google Sheets API scope
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
client = gspread.authorize(creds)
service = build("sheets", "v4", credentials=creds)
sheet = service.spreadsheets()
result = sheet.values().get(spreadsheetId=sheet_id, range=range_name).execute()
values = result.get("values", [])
return pd.DataFrame(values[1:], columns=values[0])
#streamlitconfiguration
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")
with st.sidebar:
selected = option_menu(
"DataScribe Menu",
["Home", "Upload Data", "Define Query", "Extract Information", "View & Download"],
icons=["house", "cloud-upload", "gear", "search", "table"],
menu_icon="cast",
default_index=0
)
if selected == "Home":
st.markdown("""
<h1 style="text-align:center; color:#4CAF50; font-size: 40px;">🚀 Welcome to DataScribe</h1>
<p style="text-align:center; font-size: 18px; color:#333;">An AI-powered information extraction tool to streamline data retrieval and analysis.</p>
""", unsafe_allow_html=True)
st.markdown("""---""")
def feature_card(title, description, icon, page):
col1, col2 = st.columns([1, 4])
with col1:
st.markdown(f"<div style='font-size: 40px; text-align:center;'>{icon}</div>", unsafe_allow_html=True)
with col2:
if st.button(f"{title}", key=title, help=description):
st.session_state.selected_page = page
st.markdown(f"<p style='font-size: 14px; color:#555;'>{description}</p>", unsafe_allow_html=True)
col1, col2 = st.columns([1, 1])
with col1:
feature_card(
title="Upload Data",
description="Upload data from CSV or Google Sheets to get started with your extraction.",
icon="📄",
page="Upload Data"
)
with col2:
feature_card(
title="Define Custom Queries",
description="Set custom search queries for each entity in your dataset for specific information retrieval.",
icon="🔍",
page="Define Query"
)
col1, col2 = st.columns([1, 1])
with col1:
feature_card(
title="Run Automated Searches",
description="Execute automated web searches and extract relevant information using an AI-powered agent.",
icon="🤖",
page="Extract Information"
)
with col2:
feature_card(
title="View & Download Results",
description="View extracted data in a structured format and download as a CSV or update Google Sheets.",
icon="📊",
page="View & Download"
)
elif selected == "Upload Data":
st.header("Upload or Connect Your Data")
data_source = st.radio("Choose data source:", ["CSV Files", "Google Sheets"])
if data_source == "CSV Files":
if "data" in st.session_state:
st.success("Data uploaded successfully! Here is a preview:")
st.dataframe(st.session_state["data"].head(10)) # Display only the first 10 rows for a cleaner view
else:
uploaded_files = st.file_uploader("Upload your CSV files", type=["csv"], accept_multiple_files=True)
if uploaded_files is not None:
dfs = []
for uploaded_file in uploaded_files:
try:
df = pd.read_csv(uploaded_file)
dfs.append(df)
except Exception as e:
st.error(f"Error reading file {uploaded_file.name}: {e}")
if dfs:
full_data = pd.concat(dfs, ignore_index=True)
st.session_state["data"] = full_data
st.success("Data uploaded successfully! Here is a preview:")
st.dataframe(full_data.head(10)) # Show preview of first 10 rows
else:
st.warning("No valid data found in the uploaded files.")
if st.button("Clear Data"):
del st.session_state["data"]
st.success("Data has been cleared!")
elif data_source == "Google Sheets":
sheet_id = st.text_input("Enter Google Sheet ID")
range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
if sheet_id and range_name:
if st.button("Fetch Data"):
with st.spinner("Fetching data from Google Sheets..."):
try:
data = get_google_sheet_data(sheet_id, range_name)
st.session_state["data"] = data
st.success("Data fetched successfully! Here is a preview:")
st.dataframe(data.head(10)) # Show preview of first 10 rows
except Exception as e:
st.error(f"Error fetching data: {e}")
else:
st.warning("Please enter both Sheet ID and Range name before fetching data.")
elif selected == "Define Query":
st.header("Define Your Custom Query")
if "data" not in st.session_state or st.session_state["data"] is None:
st.warning("Please upload data first! Use the 'Upload Data' section to upload your data.")
else:
column = st.selectbox(
"Select entity column",
st.session_state["data"].columns,
help="Select the column that contains the entities for which you want to define queries."
)
st.markdown("""
<style>
div[data-baseweb="select"] div[data-id="select"] {{
background-color: #f0f8ff;
}}
</style>
""", unsafe_allow_html=True)
st.subheader("Define Fields to Extract")
num_fields = st.number_input(
"Number of fields to extract",
min_value=1,
value=1,
step=1,
help="Specify how many fields you want to extract from each entity."
)
fields = []
for i in range(num_fields):
field = st.text_input(
f"Field {i+1} name",
key=f"field_{i}",
placeholder=f"Enter field name for {i+1}",
help="Name the field you want to extract from the entity."
)
if field:
fields.append(field)
if fields:
st.subheader("Query Template")
query_template = st.text_area(
"Enter query template (Use '{entity}' to represent each entity)",
value=f"Find the {', '.join(fields)} for {{entity}}",
help="You can use {entity} as a placeholder to represent each entity in the query."
)
if "{entity}" in query_template:
example_entity = str(st.session_state["data"][column].iloc[0])
example_query = query_template.replace("{entity}", example_entity)
st.write("### Example Query Preview")
st.code(example_query)
if st.button("Save Query Configuration"):
if not fields:
st.error("Please define at least one field to extract.")
elif not query_template:
st.error("Please enter a query template.")
else:
st.session_state["column_selection"] = column
st.session_state["query_template"] = query_template
st.session_state["extraction_fields"] = fields
st.success("Query configuration saved successfully!")
elif selected == "Extract Information":
st.header("Extract Information")
if "query_template" in st.session_state and "data" in st.session_state:
st.write("### Using Query Template:")
st.code(st.session_state["query_template"])
column_selection = st.session_state["column_selection"]
entities_column = st.session_state["data"][column_selection]
col1, col2 = st.columns([2, 1])
with col1:
st.write("### Selected Entity Column:")
st.dataframe(entities_column, use_container_width=True)
with col2:
start_button = st.button("Start Extraction", type="primary", use_container_width=True)
results_container = st.empty()
if start_button:
with st.spinner("Extracting information..."):
progress_bar = st.progress(0)
progress_text = st.empty()
try:
results = []
for i, selected_entity in enumerate(entities_column):
user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
results.append({
"Entity": selected_entity,
"Extracted Information": final_answer,
"Search Results": search_results
})
progress = (i + 1) / len(entities_column)
progress_bar.progress(progress)
progress_text.text(f"Processing {i+1}/{len(entities_column)} entities...")
st.session_state["results"] = results
progress_bar.empty()
progress_text.empty()
st.success("Extraction completed successfully!")
except Exception as e:
st.error(f"An error occurred during extraction: {str(e)}")
st.session_state.pop("results", None)
if "results" in st.session_state and st.session_state["results"]:
with results_container:
results = st.session_state["results"]
search_query = st.text_input("🔍 Search results", "")
tab1, tab2 = st.tabs(["Compact View", "Detailed View"])
with tab1:
found_results = False
for result in results:
if search_query.lower() in str(result["Entity"]).lower() or \
search_query.lower() in str(result["Extracted Information"]).lower():
found_results = True
with st.expander(f"📋 {result['Entity']}", expanded=False):
st.markdown("#### Extracted Information")
st.write(result["Extracted Information"])
if not found_results and search_query:
st.info("No results found for your search.")
with tab2:
found_results = False
for i, result in enumerate(results):
if search_query.lower() in str(result["Entity"]).lower() or \
search_query.lower() in str(result["Extracted Information"]).lower():
found_results = True
st.markdown(f"### Entity {i+1}: {result['Entity']}")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### 📝 Extracted Information")
st.info(result["Extracted Information"])
with col2:
st.markdown("#### 🔍 Search Results")
st.warning(result["Search Results"])
st.divider()
if not found_results and search_query:
st.info("No results found for your search.")
else:
st.warning("Please upload your data and define the query template.")
elif selected == "Extract Information":
st.header("Extract Information")
if "query_template" in st.session_state and "data" in st.session_state:
st.write("### Using Query Template:")
st.code(st.session_state["query_template"])
column_selection = st.session_state["column_selection"]
entities_column = st.session_state["data"][column_selection]
col1, col2 = st.columns([2, 1])
with col1:
st.write("### Selected Entity Column:")
st.dataframe(entities_column, use_container_width=True)
with col2:
start_button = st.button("Start Extraction", type="primary", use_container_width=True)
results_container = st.empty()
if start_button:
with st.spinner("Extracting information..."):
progress_bar = st.progress(0)
progress_text = st.empty()
try:
results = []
for i, selected_entity in enumerate(entities_column):
user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
results.append({
"Entity": selected_entity,
"Extracted Information": final_answer,
"Search Results": search_results
})
progress = (i + 1) / len(entities_column)
progress_bar.progress(progress)
progress_text.text(f"Processing {i+1}/{len(entities_column)} entities...")
st.session_state["results"] = results
progress_bar.empty()
progress_text.empty()
st.success("Extraction completed successfully!")
except Exception as e:
st.error(f"An error occurred during extraction: {str(e)}")
st.session_state.pop("results", None)
if "results" in st.session_state and st.session_state["results"]:
with results_container:
results = st.session_state["results"]
search_query = st.text_input("🔍 Search results", "")
tab1, tab2 = st.tabs(["Compact View", "Detailed View"])
with tab1:
found_results = False
for result in results:
if search_query.lower() in str(result["Entity"]).lower() or \
search_query.lower() in str(result["Extracted Information"]).lower():
found_results = True
with st.expander(f"📋 {result['Entity']}", expanded=False):
st.markdown("#### Extracted Information")
st.write(result["Extracted Information"])
if not found_results and search_query:
st.info("No results found for your search.")
with tab2:
found_results = False
for i, result in enumerate(results):
if search_query.lower() in str(result["Entity"]).lower() or \
search_query.lower() in str(result["Extracted Information"]).lower():
found_results = True
st.markdown(f"### Entity {i+1}: {result['Entity']}")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### 📝 Extracted Information")
st.info(result["Extracted Information"])
with col2:
st.markdown("#### 🔍 Search Results")
st.warning(result["Search Results"])
st.divider()
if not found_results and search_query:
st.info("No results found for your search.")
else:
st.warning("Please upload your data and define the query template.")
elif selected == "View & Download":
st.header("View & Download Results")
if "results" in st.session_state and st.session_state["results"]:
results_df = pd.DataFrame(st.session_state["results"])
st.write("### Results Preview")
# Display the results preview
if "Extracted Information" in results_df.columns and "Search Results" in results_df.columns:
st.dataframe(results_df.style.map(lambda val: 'background-color: #d3f4ff' if isinstance(val, str) else '', subset=["Extracted Information", "Search Results"]))
else:
st.warning("Required columns are missing in results data.")
# Download options
download_option = st.selectbox(
"Select data to download:",
["All Results", "Extracted Information", "Web Results"]
)
if download_option == "All Results":
data_to_download = results_df
elif download_option == "Extracted Information":
data_to_download = results_df[["Entity", "Extracted Information"]]
elif download_option == "Web Results":
data_to_download = results_df[["Entity", "Search Results"]]
st.download_button(
label=f"Download {download_option} as CSV",
data=data_to_download.to_csv(index=False),
file_name=f"{download_option.lower().replace(' ', '_')}.csv",
mime="text/csv"
)
# Option to update Google Sheets
update_option = st.selectbox(
"Do you want to update Google Sheets?",
["No", "Yes"]
)
if update_option == "Yes":
if 'sheet_id' not in st.session_state:
st.session_state.sheet_id = ''
if 'range_name' not in st.session_state:
st.session_state.range_name = ''
# Input fields for Google Sheets ID and Range
sheet_id = st.text_input("Enter Google Sheet ID", value=st.session_state.sheet_id)
range_name = st.text_input("Enter Range (e.g., 'Sheet1!A1')", value=st.session_state.range_name)
if sheet_id and range_name:
st.session_state.sheet_id = sheet_id
st.session_state.range_name = range_name
# Prepare data for update
data_to_update = [results_df.columns.tolist()] + results_df.values.tolist()
# Update Google Sheets button
if st.button("Update Google Sheet"):
try:
if '!' not in range_name:
st.error("Invalid range format. Please use the format 'SheetName!Range'.")
else:
sheet_name, cell_range = range_name.split('!', 1)
sheet = client.open_by_key(sheet_id).worksheet(sheet_name)
sheet.clear()
sheet.update(f"{cell_range}", data_to_update)
st.success("Data updated in the Google Sheet!")
except Exception as e:
st.error(f"Error updating Google Sheet: {e}")
else:
st.warning("Please enter both the Sheet ID and Range name before updating.")
else:
st.warning("No results available to view. Please run the extraction process.") |