File size: 25,522 Bytes
9dcfa9a
 
 
 
 
 
 
d8796fc
98915c7
14a0aaa
 
 
98915c7
 
d8796fc
 
 
 
98915c7
 
 
9dcfa9a
d8796fc
14a0aaa
9dcfa9a
 
cfde529
9dcfa9a
cfde529
 
14a0aaa
 
 
cfde529
 
98915c7
9dcfa9a
96c99bd
98915c7
9dcfa9a
 
cfde529
 
 
 
 
98915c7
 
cfde529
9dcfa9a
98915c7
 
 
 
9dcfa9a
98915c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a0aaa
 
 
 
 
 
 
 
 
 
 
 
cfde529
14a0aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98915c7
14a0aaa
98915c7
 
 
 
 
14a0aaa
98915c7
 
 
 
 
d8796fc
14a0aaa
 
 
96c99bd
14a0aaa
 
 
 
 
cfde529
98915c7
 
 
 
14a0aaa
 
 
 
 
98915c7
9dcfa9a
98915c7
 
2571ddf
 
 
 
98915c7
 
 
 
 
 
 
9dcfa9a
 
 
 
 
 
 
 
 
 
 
d8796fc
98915c7
 
14a0aaa
98915c7
 
 
14a0aaa
98915c7
 
 
14a0aaa
98915c7
14a0aaa
98915c7
14a0aaa
98915c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8796fc
 
9dcfa9a
98915c7
 
 
 
 
14a0aaa
98915c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a0aaa
98915c7
 
14a0aaa
 
 
 
9dcfa9a
 
 
 
98915c7
14a0aaa
 
 
 
 
 
 
 
 
 
 
 
 
98915c7
9dcfa9a
 
14a0aaa
98915c7
14a0aaa
9dcfa9a
14a0aaa
 
 
 
 
98915c7
14a0aaa
98915c7
 
 
 
 
 
14a0aaa
98915c7
14a0aaa
 
 
 
 
 
 
98915c7
 
 
14a0aaa
 
 
 
 
 
98915c7
 
 
 
 
 
 
14a0aaa
 
98915c7
 
 
 
 
 
 
 
 
14a0aaa
 
 
 
 
 
 
 
 
9dcfa9a
 
 
d8796fc
98915c7
 
 
d8796fc
9dcfa9a
98915c7
cfde529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98915c7
 
cfde529
 
 
 
 
 
 
14a0aaa
cfde529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dcfa9a
98915c7
 
cfde529
98915c7
 
 
cfde529
 
 
 
 
98915c7
cfde529
14a0aaa
 
 
98915c7
 
14a0aaa
 
 
 
 
 
98915c7
 
14a0aaa
 
 
98915c7
 
14a0aaa
cfde529
 
 
 
 
 
 
 
 
 
 
14a0aaa
cfde529
 
 
14a0aaa
cfde529
 
 
14a0aaa
cfde529
 
14a0aaa
cfde529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dcfa9a
82e5250
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
import os
from google.oauth2 import service_account
from googleapiclient.discovery import build
from streamlit_chat import message as st_message
import plotly.express as px
import re
import streamlit as st
import gspread
from google.oauth2.service_account import Credentials
import warnings
import time
from langchain.schema import HumanMessage, SystemMessage, AIMessage
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
from langchain_community.utilities import GoogleSerperAPIWrapper
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain_groq import ChatGroq
import numpy as np
import gspread
from dotenv import load_dotenv


warnings.filterwarnings("ignore", category=DeprecationWarning)

#google sheet
scopes = ["https://www.googleapis.com/auth/spreadsheets"]
creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
client = gspread.authorize(creds)


#environment
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
SERPER_API_KEY = os.getenv("SERPER_API_KEY")


#session state variables
if "results" not in st.session_state:
    st.session_state["results"] = [] 
    
    
# Initialize Google Serper API wrapper
search = GoogleSerperAPIWrapper(serp_api_key=SERPER_API_KEY)
llm = ChatGroq(model="llama-3.1-70b-versatile")

# Create the system and human messages for dynamic query processing
system_message_content = """
You are a helpful assistant designed to answer questions by extracting information from the web and external sources. Your goal is to provide the most relevant, concise, and accurate response to user queries.
"""

# Define the tool list
tools = [
    Tool(
        name="Web Search",
        func=search.run,
        description="Searches the web for information related to the query"
    )
]

# Initialize the agent with the tools
agent = initialize_agent(
    tools,
    ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-70b-versatile"),
    agent_type=AgentType.SELF_ASK_WITH_SEARCH,
    verbose=True,
    memory=ConversationBufferWindowMemory(k=5, return_messages=True)
)

# Function to perform the web search and get results
def perform_web_search(query, max_retries=3, delay=2):
    retries = 0
    while retries < max_retries:
        try:
            search_results = search.run(query)
            return search_results
        except Exception as e:
            retries += 1
            st.warning(f"Web search failed for query '{query}'. Retrying ({retries}/{max_retries})...")
            time.sleep(delay)
    st.error(f"Failed to perform web search for query '{query}' after {max_retries} retries.")
    return "NaN"

def update_google_sheet(sheet_id, range_name, data):
    try:
        # Define the Google Sheets API scope
        scopes = ["https://www.googleapis.com/auth/spreadsheets"]
        creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
        client = gspread.authorize(creds)

        # Open the Google Sheet and specify the worksheet
        sheet = client.open_by_key(sheet_id).worksheet(range_name.split("!")[0])

        # Prepare data for update
        data_to_update = [data.columns.tolist()] + data.values.tolist()

        # Clear the existing content in the specified range and update it with new data
        sheet.clear()
        sheet.update(range_name, data_to_update)

        st.success("Data successfully updated in the Google Sheet!")
    except Exception as e:
        st.error(f"Error updating Google Sheet: {e}")
# Function to get LLM response for dynamic queries

def get_llm_response(entity, query, web_results):
    prompt = f"""
    Extract relevant {query} (e.g., email, phone number) from the following web results for the entity: {entity}.
    Web Results: {web_results}
    """

    human_message_content = f"""
    Entity: {entity}
    Query: {query}
    Web Results: {web_results}
    """

    try:
        response = agent.invoke([system_message_content, human_message_content], handle_parsing_errors=True)
        extracted_info = response.get("output", "Information not available").strip()

        # Clean up irrelevant parts of the response
        cleaned_info = re.sub(r"(Thought:|Action:)[^A-Za-z0-9]*", "", extracted_info).strip()
        return cleaned_info
    except Exception as e:
        return "NaN"
    
# Retry logic for multiple web searches if necessary
def refine_answer_with_searches(entity, query, max_retries=3):
    search_results = perform_web_search(query.format(entity=entity))
    extracted_answer = get_llm_response(entity, query, search_results)

    if len(extracted_answer.split()) <= 2 or "not available" in extracted_answer.lower():
        search_results = perform_web_search(query.format(entity=entity))
        extracted_answer = get_llm_response(entity, query, search_results)

    return extracted_answer, search_results

# Setup Google Sheets data fetch
def get_google_sheet_data(sheet_id, range_name):
        # Define the Google Sheets API scope
    scopes = ["https://www.googleapis.com/auth/spreadsheets"]
    creds = Credentials.from_service_account_file("credentials.json", scopes=scopes)
    client = gspread.authorize(creds)
    service = build("sheets", "v4", credentials=creds)
    sheet = service.spreadsheets()
    result = sheet.values().get(spreadsheetId=sheet_id, range=range_name).execute()
    values = result.get("values", [])
    return pd.DataFrame(values[1:], columns=values[0])

#streamlitconfiguration
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")

with st.sidebar:
    selected = option_menu(
        "DataScribe Menu",
        ["Home", "Upload Data", "Define Query", "Extract Information", "View & Download"],
        icons=["house", "cloud-upload", "gear", "search", "table"],
        menu_icon="cast",
        default_index=0
    )

if selected == "Home":
    st.markdown("""
        <h1 style="text-align:center; color:#4CAF50; font-size: 40px;">🚀 Welcome to DataScribe</h1>
        <p style="text-align:center; font-size: 18px; color:#333;">An AI-powered information extraction tool to streamline data retrieval and analysis.</p>
    """, unsafe_allow_html=True)

    st.markdown("""---""")

    def feature_card(title, description, icon, page):
        col1, col2 = st.columns([1, 4])
        with col1:
            st.markdown(f"<div style='font-size: 40px; text-align:center;'>{icon}</div>", unsafe_allow_html=True)
        with col2:
            if st.button(f"{title}", key=title, help=description):
                st.session_state.selected_page = page
            st.markdown(f"<p style='font-size: 14px; color:#555;'>{description}</p>", unsafe_allow_html=True)
            
    col1, col2 = st.columns([1, 1])

    with col1:
        feature_card(
            title="Upload Data",
            description="Upload data from CSV or Google Sheets to get started with your extraction.",
            icon="📄",
            page="Upload Data"
        )

    with col2:
        feature_card(
            title="Define Custom Queries",
            description="Set custom search queries for each entity in your dataset for specific information retrieval.",
            icon="🔍",
            page="Define Query"
        )

    col1, col2 = st.columns([1, 1])

    with col1:
        feature_card(
            title="Run Automated Searches",
            description="Execute automated web searches and extract relevant information using an AI-powered agent.",
            icon="🤖",
            page="Extract Information"
        )

    with col2:
        feature_card(
            title="View & Download Results",
            description="View extracted data in a structured format and download as a CSV or update Google Sheets.",
            icon="📊",
            page="View & Download"
        )

elif selected == "Upload Data":
    st.header("Upload or Connect Your Data")
    data_source = st.radio("Choose data source:", ["CSV Files", "Google Sheets"])

    if data_source == "CSV Files":
        if "data" in st.session_state:
            st.success("Data uploaded successfully! Here is a preview:")
            st.dataframe(st.session_state["data"].head(10))  # Display only the first 10 rows for a cleaner view
        else:
            uploaded_files = st.file_uploader("Upload your CSV files", type=["csv"], accept_multiple_files=True)

            if uploaded_files is not None:
                dfs = []
                for uploaded_file in uploaded_files:
                    try:
                        df = pd.read_csv(uploaded_file)
                        dfs.append(df)
                    except Exception as e:
                        st.error(f"Error reading file {uploaded_file.name}: {e}")
                
                if dfs:
                    full_data = pd.concat(dfs, ignore_index=True)
                    st.session_state["data"] = full_data
                    st.success("Data uploaded successfully! Here is a preview:")
                    st.dataframe(full_data.head(10))  # Show preview of first 10 rows
                else:
                    st.warning("No valid data found in the uploaded files.")
            
            if st.button("Clear Data"):
                del st.session_state["data"]
                st.success("Data has been cleared!")

    elif data_source == "Google Sheets":
        sheet_id = st.text_input("Enter Google Sheet ID")
        range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")

        if sheet_id and range_name:
            if st.button("Fetch Data"):
                with st.spinner("Fetching data from Google Sheets..."):
                    try:
                        data = get_google_sheet_data(sheet_id, range_name)
                        st.session_state["data"] = data
                        st.success("Data fetched successfully! Here is a preview:")
                        st.dataframe(data.head(10))  # Show preview of first 10 rows
                    except Exception as e:
                        st.error(f"Error fetching data: {e}")
        else:
            st.warning("Please enter both Sheet ID and Range name before fetching data.")


elif selected == "Define Query":
    st.header("Define Your Custom Query")

    if "data" not in st.session_state or st.session_state["data"] is None:
        st.warning("Please upload data first! Use the 'Upload Data' section to upload your data.")
    else:
        column = st.selectbox(
            "Select entity column", 
            st.session_state["data"].columns,
            help="Select the column that contains the entities for which you want to define queries."
        )
        
        st.markdown("""
        <style>
        div[data-baseweb="select"] div[data-id="select"] {{
            background-color: #f0f8ff;
        }}
        </style>
        """, unsafe_allow_html=True)

        st.subheader("Define Fields to Extract")
        num_fields = st.number_input(
            "Number of fields to extract", 
            min_value=1, 
            value=1, 
            step=1, 
            help="Specify how many fields you want to extract from each entity."
        )
        
        fields = []
        for i in range(num_fields):
            field = st.text_input(
                f"Field {i+1} name", 
                key=f"field_{i}",
                placeholder=f"Enter field name for {i+1}", 
                help="Name the field you want to extract from the entity."
            )
            if field:
                fields.append(field)

        if fields:
            st.subheader("Query Template")
            query_template = st.text_area(
                "Enter query template (Use '{entity}' to represent each entity)",
                value=f"Find the {', '.join(fields)} for {{entity}}",
                help="You can use {entity} as a placeholder to represent each entity in the query."
            )

            if "{entity}" in query_template:
                example_entity = str(st.session_state["data"][column].iloc[0])
                example_query = query_template.replace("{entity}", example_entity)
                st.write("### Example Query Preview")
                st.code(example_query)

            if st.button("Save Query Configuration"):
                if not fields:
                    st.error("Please define at least one field to extract.")
                elif not query_template:
                    st.error("Please enter a query template.")
                else:
                    st.session_state["column_selection"] = column
                    st.session_state["query_template"] = query_template
                    st.session_state["extraction_fields"] = fields
                    st.success("Query configuration saved successfully!")

elif selected == "Extract Information":
    st.header("Extract Information")

    if "query_template" in st.session_state and "data" in st.session_state:
        st.write("### Using Query Template:")
        st.code(st.session_state["query_template"])

        column_selection = st.session_state["column_selection"]
        entities_column = st.session_state["data"][column_selection]
        
        col1, col2 = st.columns([2, 1])
        with col1:
            st.write("### Selected Entity Column:")
            st.dataframe(entities_column, use_container_width=True)
        
        with col2:
            start_button = st.button("Start Extraction", type="primary", use_container_width=True)

        results_container = st.empty()
            
        if start_button:
            with st.spinner("Extracting information..."):
                progress_bar = st.progress(0)
                progress_text = st.empty()
                
                try:
                    results = []
                    for i, selected_entity in enumerate(entities_column):
                        user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
                        final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
                        results.append({
                            "Entity": selected_entity,
                            "Extracted Information": final_answer,
                            "Search Results": search_results
                        })
                        
                        progress = (i + 1) / len(entities_column)
                        progress_bar.progress(progress)
                        progress_text.text(f"Processing {i+1}/{len(entities_column)} entities...")

                    st.session_state["results"] = results
                    
                    progress_bar.empty()
                    progress_text.empty()
                    st.success("Extraction completed successfully!")

                except Exception as e:
                    st.error(f"An error occurred during extraction: {str(e)}")
                    st.session_state.pop("results", None)

        if "results" in st.session_state and st.session_state["results"]:
            with results_container:
                results = st.session_state["results"]
                
                search_query = st.text_input("🔍 Search results", "")
                
                tab1, tab2 = st.tabs(["Compact View", "Detailed View"])
                
                with tab1:
                    found_results = False
                    for result in results:
                        if search_query.lower() in str(result["Entity"]).lower() or \
                           search_query.lower() in str(result["Extracted Information"]).lower():
                            found_results = True
                            with st.expander(f"📋 {result['Entity']}", expanded=False):
                                st.markdown("#### Extracted Information")
                                st.write(result["Extracted Information"])
                    
                    if not found_results and search_query:
                        st.info("No results found for your search.")
                
                with tab2:
                    found_results = False
                    for i, result in enumerate(results):
                        if search_query.lower() in str(result["Entity"]).lower() or \
                           search_query.lower() in str(result["Extracted Information"]).lower():
                            found_results = True
                            st.markdown(f"### Entity {i+1}: {result['Entity']}")
                            
                            col1, col2 = st.columns(2)
                            
                            with col1:
                                st.markdown("#### 📝 Extracted Information")
                                st.info(result["Extracted Information"])
                            
                            with col2:
                                st.markdown("#### 🔍 Search Results")
                                st.warning(result["Search Results"])
                            
                            st.divider()
                    
                    if not found_results and search_query:
                        st.info("No results found for your search.")
    else:
        st.warning("Please upload your data and define the query template.")
        
elif selected == "Extract Information":
    st.header("Extract Information")

    if "query_template" in st.session_state and "data" in st.session_state:
        st.write("### Using Query Template:")
        st.code(st.session_state["query_template"])

        column_selection = st.session_state["column_selection"]
        entities_column = st.session_state["data"][column_selection]
        
        col1, col2 = st.columns([2, 1])
        with col1:
            st.write("### Selected Entity Column:")
            st.dataframe(entities_column, use_container_width=True)
        
        with col2:
            start_button = st.button("Start Extraction", type="primary", use_container_width=True)

        results_container = st.empty()
            
        if start_button:
            with st.spinner("Extracting information..."):
                progress_bar = st.progress(0)
                progress_text = st.empty()
                
                try:
                    results = []
                    for i, selected_entity in enumerate(entities_column):
                        user_query = st.session_state["query_template"].replace("{entity}", str(selected_entity))
                        final_answer, search_results = refine_answer_with_searches(selected_entity, user_query)
                        results.append({
                            "Entity": selected_entity,
                            "Extracted Information": final_answer,
                            "Search Results": search_results
                        })
                        
                        progress = (i + 1) / len(entities_column)
                        progress_bar.progress(progress)
                        progress_text.text(f"Processing {i+1}/{len(entities_column)} entities...")

                    st.session_state["results"] = results
                    
                    progress_bar.empty()
                    progress_text.empty()
                    st.success("Extraction completed successfully!")

                except Exception as e:
                    st.error(f"An error occurred during extraction: {str(e)}")
                    st.session_state.pop("results", None)

        if "results" in st.session_state and st.session_state["results"]:
            with results_container:
                results = st.session_state["results"]
                
                search_query = st.text_input("🔍 Search results", "")
                
                tab1, tab2 = st.tabs(["Compact View", "Detailed View"])
                
                with tab1:
                    found_results = False
                    for result in results:
                        if search_query.lower() in str(result["Entity"]).lower() or \
                           search_query.lower() in str(result["Extracted Information"]).lower():
                            found_results = True
                            with st.expander(f"📋 {result['Entity']}", expanded=False):
                                st.markdown("#### Extracted Information")
                                st.write(result["Extracted Information"])
                    
                    if not found_results and search_query:
                        st.info("No results found for your search.")
                
                with tab2:
                    found_results = False
                    for i, result in enumerate(results):
                        if search_query.lower() in str(result["Entity"]).lower() or \
                           search_query.lower() in str(result["Extracted Information"]).lower():
                            found_results = True
                            st.markdown(f"### Entity {i+1}: {result['Entity']}")
                            
                            col1, col2 = st.columns(2)
                            
                            with col1:
                                st.markdown("#### 📝 Extracted Information")
                                st.info(result["Extracted Information"])
                            
                            with col2:
                                st.markdown("#### 🔍 Search Results")
                                st.warning(result["Search Results"])
                            
                            st.divider()
                    
                    if not found_results and search_query:
                        st.info("No results found for your search.")
    else:
        st.warning("Please upload your data and define the query template.")
        
elif selected == "View & Download":
    st.header("View & Download Results")

    if "results" in st.session_state and st.session_state["results"]:
        results_df = pd.DataFrame(st.session_state["results"])
        st.write("### Results Preview")

        # Display the results preview
        if "Extracted Information" in results_df.columns and "Search Results" in results_df.columns:
            st.dataframe(results_df.style.map(lambda val: 'background-color: #d3f4ff' if isinstance(val, str) else '', subset=["Extracted Information", "Search Results"]))
        else:
            st.warning("Required columns are missing in results data.")

        # Download options
        download_option = st.selectbox(
            "Select data to download:",
            ["All Results", "Extracted Information", "Web Results"]
        )

        if download_option == "All Results":
            data_to_download = results_df
        elif download_option == "Extracted Information":
            data_to_download = results_df[["Entity", "Extracted Information"]]
        elif download_option == "Web Results":
            data_to_download = results_df[["Entity", "Search Results"]]

        st.download_button(
            label=f"Download {download_option} as CSV",
            data=data_to_download.to_csv(index=False),
            file_name=f"{download_option.lower().replace(' ', '_')}.csv",
            mime="text/csv"
        )

        # Option to update Google Sheets
        update_option = st.selectbox(
            "Do you want to update Google Sheets?",
            ["No", "Yes"]
        )

        if update_option == "Yes":
            if 'sheet_id' not in st.session_state:
                st.session_state.sheet_id = ''
            if 'range_name' not in st.session_state:
                st.session_state.range_name = ''

            # Input fields for Google Sheets ID and Range
            sheet_id = st.text_input("Enter Google Sheet ID", value=st.session_state.sheet_id)
            range_name = st.text_input("Enter Range (e.g., 'Sheet1!A1')", value=st.session_state.range_name)

            if sheet_id and range_name:
                st.session_state.sheet_id = sheet_id
                st.session_state.range_name = range_name

                # Prepare data for update
                data_to_update = [results_df.columns.tolist()] + results_df.values.tolist()

                # Update Google Sheets button
                if st.button("Update Google Sheet"):
                    try:
                        if '!' not in range_name:
                            st.error("Invalid range format. Please use the format 'SheetName!Range'.")
                        else:
                            sheet_name, cell_range = range_name.split('!', 1) 
                            sheet = client.open_by_key(sheet_id).worksheet(sheet_name)
                            sheet.clear()
                            sheet.update(f"{cell_range}", data_to_update)
                            st.success("Data updated in the Google Sheet!")
                    except Exception as e:
                        st.error(f"Error updating Google Sheet: {e}")
            else:
                st.warning("Please enter both the Sheet ID and Range name before updating.")
    else:
        st.warning("No results available to view. Please run the extraction process.")