File size: 5,824 Bytes
9dcfa9a
 
 
 
 
 
 
96c99bd
9dcfa9a
 
96c99bd
9dcfa9a
 
 
 
 
96c99bd
9dcfa9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c99bd
ab98559
 
 
96c99bd
9dcfa9a
96c99bd
9dcfa9a
 
96c99bd
9dcfa9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c99bd
9dcfa9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c99bd
9dcfa9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c99bd
9dcfa9a
 
 
 
 
 
 
96c99bd
9dcfa9a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
import os
from google.oauth2 import service_account
from googleapiclient.discovery import build
from streamlit_chat import message as st_message
from langchain.schema import SystemMessage
from langchain_groq import ChatGroq
from dotenv import load_dotenv
import warnings

warnings.filterwarnings("ignore", category=DeprecationWarning)

# Load environment variables
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
llm = ChatGroq(model="llama-3.1-70b-versatile")

PROMPT_TEMPLATE = """
You are an expert information extraction assistant designed to obtain specific details from the web and external sources.
You’ll be provided with an entity name and a query that specifies the type of information needed about that entity.
Please follow the instructions carefully and return only the most relevant, accurate information.

#### Entity Name: {entity}
#### Query: {query}

Instructions:
1. Extract the information directly related to the entity.
2. If available, include only verified, publicly accessible data.
3. Provide information in a single sentence or a short, structured response.
4. If the requested information isn’t available or verifiable, respond with "Information not available."

Begin extraction.
"""

def get_llm_response(entity, query):
    formatted_prompt = PROMPT_TEMPLATE.format(entity=entity, query=query)
    response = llm([SystemMessage(content=formatted_prompt)])
    return response[0].content if response else "Information not available"

# Streamlit Setup
st.set_page_config(page_title="DataScribe", page_icon=":notebook_with_decorative_cover:", layout="wide")

# Sidebar Navigation
with st.sidebar:
    selected = option_menu(
        "DataScribe Menu",
        ["Home", "Upload Data", "Define Query", "Extract Information", "View & Download"],
        icons=["house", "cloud-upload", "gear", "search", "table"],
        menu_icon="cast",
        default_index=0
    )

# Main header
st.title("DataScribe: AI-Powered Information Extractor")

# Initialize session states for data and results
if "data" not in st.session_state:
    st.session_state["data"] = None
if "results" not in st.session_state:
    st.session_state["results"] = None
if "column_selection" not in st.session_state:
    st.session_state["column_selection"] = None

# Upload Data Section
if selected == "Upload Data":
    st.header("Upload or Connect Your Data")
    data_source = st.radio("Choose data source:", ["CSV File", "Google Sheets"])

    if data_source == "CSV File":
        uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
        if uploaded_file:
            st.session_state["data"] = pd.read_csv(uploaded_file)
            st.write("### Preview of Uploaded Data")
            st.dataframe(st.session_state["data"].head())

    elif data_source == "Google Sheets":
        sheet_id = st.text_input("Enter Google Sheet ID")
        range_name = st.text_input("Enter the data range (e.g., Sheet1!A1:C100)")
        if st.button("Fetch Data"):
            if sheet_id and range_name:
                st.session_state["data"] = get_google_sheet_data(sheet_id, range_name)
                st.write("### Preview of Google Sheets Data")
                st.dataframe(st.session_state["data"].head())
            else:
                st.warning("Please enter both the Google Sheet ID and range.")

# Define Query Section
elif selected == "Define Query":
    st.header("Define Your Custom Query")
    if st.session_state["data"] is not None:
        column_selection = st.selectbox("Select the primary column for entities", options=st.session_state["data"].columns)
        query_template = st.text_input("Define your query template", "Get me the email for {company}")
        st.session_state["query_template"] = query_template
        st.session_state["column_selection"] = column_selection

        st.write("### Example query preview")
        if column_selection:
            sample_entity = str(st.session_state["data"][column_selection].iloc[0])
            example_query = query_template.replace("{company}", sample_entity)
            st.code(example_query)
    else:
        st.warning("Please upload data first.")

# Extract Information Section with Progress Bar
elif selected == "Extract Information":
    st.header("Extract Information")
    if st.session_state.get("query_template") and st.session_state["data"] is not None and st.session_state["column_selection"] is not None:
        st.write("Data extraction is in progress. This may take a few moments.")
        progress_bar = st.progress(0)
        column_selection = st.session_state["column_selection"]
        progress_step = 1.0 / len(st.session_state["data"][column_selection])

        results = []
        for i, entity in enumerate(st.session_state["data"][column_selection]):
            user_message = st.session_state["query_template"].replace("{company}", str(entity))
            result_text = get_llm_response(entity, user_message)
            results.append({"Entity": entity, "Extracted Information": result_text})
            progress_bar.progress((i + 1) * progress_step)

        st.session_state["results"] = pd.DataFrame(results)
        st.write("### Extracted Information")
        st.dataframe(st.session_state["results"])

# View & Download Section
elif selected == "View & Download":
    st.header("View and Download Results")
    if st.session_state["results"] is not None:
        st.write("### Extracted Data Table")
        st.dataframe(st.session_state["results"])

        csv_data = st.session_state["results"].to_csv(index=False)
        st.download_button("Download as CSV", csv_data, "datascribe_results.csv", "text/csv")
    else:
        st.warning("No data available to view or download.")