File size: 7,460 Bytes
2548c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3969a3d
faf2fff
bbb0c13
 
 
 
 
 
faf2fff
2062064
2548c76
aa9d78c
5a04251
3aff373
2062064
554cc90
2548c76
 
 
70b4c2a
6e92bdc
70b4c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8117fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b4c2a
c8117fb
 
 
 
 
 
 
 
 
 
 
 
70b4c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aff373
 
 
c8117fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aff373
c8117fb
 
 
 
 
 
 
 
 
70b4c2a
3aff373
70b4c2a
 
 
 
3aff373
70b4c2a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import gc
import random
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import torch
import tokenizers
import transformers
from transformers import AutoTokenizer, EncoderDecoderModel, AutoModelForSeq2SeqLM
import sentencepiece
from rdkit import Chem
import rdkit
import streamlit as st
 
st.title('predictproduct-t5')
st.markdown('##### At this space, you can predict the products of reactions from their inputs.')
st.markdown('##### The code expects input_data as a string or CSV file that contains an "input" column. The format of the string or contents of the column are like "REACTANT:{reactants of the reaction}CATALYST:{catalysts of the reaction}REAGENT:{reagents of the reaction}SOLVENT:{solvent of the reaction}".')
st.markdown('##### If there are no catalyst or reagent, fill the blank with a space. And if there are multiple reactants, concatenate them with "."')
st.markdown('##### The output contains smiles of predicted products and sum of log-likelihood for each prediction. Predictions are ordered by their log-likelihood.(0th is the most probable product.) "valid compound" is the most probable and valid(can be recognized by RDKit) prediction.')


display_text = 'input the reaction smiles (e.g. REACTANT:CNc1nc(SC)ncc1CO.O.O=[Cr](=O)([O-])O[Cr](=O)(=O)[O-].[Na+]CATALYST: REAGENT: SOLVENT:CC(=O)O)'

class CFG():
    num_beams = st.number_input(label='num beams', min_value=1, max_value=10, value=5, step=1)
    num_return_sequences = num_beams
    uploaded_file = st.file_uploader("Choose a CSV file")
    input_data = st.text_area(display_text)
    model_name_or_path = 'sagawa/ZINC-t5-productpredicition'
    model = 't5'
    seed = 42

if st.button('predict'):
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    def seed_everything(seed=42):
        random.seed(seed)
        os.environ['PYTHONHASHSEED'] = str(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True
    seed_everything(seed=CFG.seed) 
    
    
    tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
        
    if CFG.model == 't5':
        model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
    elif CFG.model == 'deberta':
        model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)
    
    
    if CFG.uploaded_file is not None:
        input_data = pd.read_csv(CFG.uploaded_file)
        outputs = []
        for idx, row in input_data.iterrows():
            input_compound = row['input']
            min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
            inp = tokenizer(input_compound, return_tensors='pt').to(device)
            output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
            if CFG.num_beams > 1:
                scores = output['sequences_scores'].tolist()
                output = [tokenizer.decode(i, skip_special_tokens=True).replace('. ', '.').rstrip('.') for i in output['sequences']]
                for ith, out in enumerate(output):
                    mol = Chem.MolFromSmiles(out.rstrip('.'))
                    if type(mol) == rdkit.Chem.rdchem.Mol:
                        output.append(out.rstrip('.'))
                        scores.append(scores[ith])
                        break
                if type(mol) == None:
                    output.append(None)
                    scores.append(None)
                output += scores
                output = [input_compound] + output
                outputs.append(output)

            else:
                output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
                mol = Chem.MolFromSmiles(output[0])
                if type(mol) == rdkit.Chem.rdchem.Mol:
                    output.append(output[0])
                else:
                    output.append(None)
                output = [input_compound] + output
                outputs.append(output)    
                
        if CFG.num_beams > 1:
            output_df = pd.DataFrame(outputs, columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
        else:
            output_df = pd.DataFrame(outputs, columns=['input', '0th', 'valid compound'])

            
        @st.cache
        def convert_df(df):
            # IMPORTANT: Cache the conversion to prevent computation on every rerun
            return df.to_csv(index=False)
            
        csv = convert_df(output_df)
        
        st.download_button(
            label="Download data as CSV",
            data=csv,
            file_name='output.csv',
            mime='text/csv',
        )
    
    else:
        input_compound = CFG.input_data
        min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
        inp = tokenizer(input_compound, return_tensors='pt').to(device)
        output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
        if CFG.num_beams > 1:
            scores = output['sequences_scores'].tolist()
            output = [tokenizer.decode(i, skip_special_tokens=True).replace('. ', '.').rstrip('.') for i in output['sequences']]
            for ith, out in enumerate(output):
                mol = Chem.MolFromSmiles(out.rstrip('.'))
                if type(mol) == rdkit.Chem.rdchem.Mol:
                    output.append(out.rstrip('.'))
                    scores.append(scores[ith])
                    break
            if type(mol) == None:
                output.append(None)
                scores.append(None)
            output += scores
            output = [input_compound] + output
            
        else:
            output = [tokenizer.decode(output['sequences'][0], skip_special_tokens=True).replace('. ', '.').rstrip('.')]
            mol = Chem.MolFromSmiles(output[0])
            if type(mol) == rdkit.Chem.rdchem.Mol:
                output.append(output[0])
            else:
                output.append(None)
            
    
            if CFG.num_beams > 1:
                output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
            else:
                output_df = pd.DataFrame(np.array([input_compound]+output).reshape(1, -1), columns=['input', '0th', 'valid compound'])
            st.table(output_df)
    
            @st.cache
            def convert_df(df):
                # IMPORTANT: Cache the conversion to prevent computation on every rerun
                return df.to_csv(index=False)
    
            csv = convert_df(output_df)
            
            st.download_button(
                label="Download data as CSV",
                data=csv,
                file_name='output.csv',
                mime='text/csv',
            )
            
        except:
            pass