import argparse import os import sys import numpy as np import pandas as pd import torch from torch.utils.data import DataLoader from transformers import AutoTokenizer sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from generation_utils import ReactionT5Dataset from models import ReactionT5Yield2 from train import preprocess_df from utils import filter_out, seed_everything def parse_args(): """ Parse command line arguments. """ parser = argparse.ArgumentParser( description="Prediction script for ReactionT5Yield model." ) parser.add_argument( "--input_data", type=str, required=True, help="Data as a string or CSV file that contains an 'input' column. The format of the string or contents of the column are like 'REACTANT:{reactants of the reaction}PRODUCT:{products of the reaction}'. If there are multiple reactants, concatenate them with '.'.", ) parser.add_argument( "--test_data", type=str, required=False, help="Path to the test data. If provided, the duplicates will be removed from the input data.", ) parser.add_argument( "--model_name_or_path", type=str, default="sagawa/ReactionT5v2-yield", help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.", ) parser.add_argument("--debug", action="store_true", help="Use debug mode.") parser.add_argument( "--input_max_length", type=int, default=400, help="Maximum token length of input.", ) parser.add_argument( "--batch_size", type=int, default=5, required=False, help="Batch size." ) parser.add_argument( "--num_workers", type=int, default=4, help="Number of data loading workers." ) parser.add_argument( "--fc_dropout", type=float, default=0.0, help="Dropout rate after fully connected layers.", ) parser.add_argument( "--output_dir", type=str, default="./", help="Directory where predictions are saved.", ) parser.add_argument( "--seed", type=int, default=42, help="Random seed for reproducibility." ) return parser.parse_args() def create_embedding(dataloader, model, device): outputs = [] model.eval() model.to(device) for inputs in dataloader: inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): output = model.generate_embedding(inputs) outputs.append(output.detach().cpu().numpy()) return outputs if __name__ == "__main__": CFG = parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") CFG.device = device if not os.path.exists(CFG.output_dir): os.makedirs(CFG.output_dir) seed_everything(seed=CFG.seed) CFG.tokenizer = AutoTokenizer.from_pretrained( os.path.abspath(CFG.model_name_or_path) if os.path.exists(CFG.model_name_or_path) else CFG.model_name_or_path, return_tensors="pt", ) model = ReactionT5Yield2.from_pretrained(CFG.model_name_or_path).to(CFG.device) model.eval() input_data = filter_out( pd.read_csv(CFG.input_data), ["YIELD", "REACTANT", "PRODUCT"] ) input_data = preprocess_df(input_data, CFG, drop_duplicates=False) if CFG.test_data: test_data = filter_out( pd.read_csv(CFG.test_data), ["YIELD", "REACTANT", "PRODUCT"] ) test_data = preprocess_df(test_data, CFG, drop_duplicates=False) # Remove duplicates from the input data input_data = input_data[ ~input_data["input"].isin(test_data["input"]) ].reset_index(drop=True) input_data.to_csv(os.path.join(CFG.output_dir, "input_data.csv"), index=False) dataset = ReactionT5Dataset(CFG, input_data) dataloader = DataLoader( dataset, batch_size=CFG.batch_size, shuffle=False, num_workers=CFG.num_workers, pin_memory=True, drop_last=False, ) outputs = create_embedding(dataloader, model, CFG.device) outputs = np.concatenate(outputs, axis=0) np.save(os.path.join(CFG.output_dir, "embedding_mean.npy"), outputs)