ReactionT5 / task_yield /finetune.py
sagawa's picture
Upload 42 files
08ccc8e verified
raw
history blame
6.78 kB
import argparse
import os
import subprocess
import sys
import warnings
import pandas as pd
import torch
from datasets.utils.logging import disable_progress_bar
from transformers import AutoTokenizer
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from train import preprocess_df, train_loop
from utils import get_logger, seed_everything
# Suppress warnings and logging
warnings.filterwarnings("ignore")
disable_progress_bar()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def parse_args():
"""
Parse command line arguments.
"""
parser = argparse.ArgumentParser(
description="Training script for ReactionT5Yield model."
)
parser.add_argument(
"--train_data_path",
type=str,
required=True,
help="Path to training data CSV file.",
)
parser.add_argument(
"--valid_data_path",
type=str,
required=True,
help="Path to validation data CSV file.",
)
parser.add_argument(
"--similar_reaction_data_path",
type=str,
required=False,
help="Path to similar data CSV.",
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="sagawa/CompoundT5",
help="Pretrained model name or path.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="The model's name or path used for fine-tuning.",
)
parser.add_argument(
"--download_pretrained_model",
action="store_true",
default=False,
required=False,
help="Download pretrained model from hugging face hub and use it for fine-tuning.",
)
parser.add_argument("--debug", action="store_true", help="Enable debug mode.")
parser.add_argument(
"--epochs", type=int, default=200, help="Number of training epochs."
)
parser.add_argument(
"--patience", type=int, default=10, help="Early stopping patience."
)
parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size.")
parser.add_argument(
"--input_max_length", type=int, default=300, help="Maximum input token length."
)
parser.add_argument(
"--num_workers", type=int, default=4, help="Number of data loading workers."
)
parser.add_argument(
"--fc_dropout",
type=float,
default=0.0,
help="Dropout rate after fully connected layers.",
)
parser.add_argument(
"--eps", type=float, default=1e-6, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--weight_decay", type=float, default=0.05, help="Weight decay for optimizer."
)
parser.add_argument(
"--max_grad_norm",
type=int,
default=1000,
help="Maximum gradient norm for clipping.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Gradient accumulation steps.",
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of warmup steps."
)
parser.add_argument(
"--batch_scheduler", action="store_true", help="Use batch scheduler."
)
parser.add_argument(
"--print_freq", type=int, default=100, help="Logging frequency."
)
parser.add_argument(
"--use_amp",
action="store_true",
help="Use automatic mixed precision for training.",
)
parser.add_argument(
"--output_dir",
type=str,
default="./",
help="Directory to save the trained model.",
)
parser.add_argument(
"--seed", type=int, default=42, help="Random seed for reproducibility."
)
parser.add_argument(
"--sampling_num",
type=int,
default=-1,
help="Number of samples used for training. If you want to use all samples, set -1.",
)
parser.add_argument(
"--sampling_frac",
type=float,
default=-1.0,
help="Ratio of samples used for training. If you want to use all samples, set -1.0.",
)
parser.add_argument(
"--checkpoint",
type=str,
help="Path to the checkpoint file for resuming training.",
)
return parser.parse_args()
def download_pretrained_model():
"""
Download the pretrained model from Hugging Face.
"""
subprocess.run(
"wget https://huggingface.co/sagawa/ReactionT5v2-yield/resolve/main/CompoundT5_best.pth",
shell=True,
)
subprocess.run(
"wget https://huggingface.co/sagawa/ReactionT5v2-yield/resolve/main/config.pth",
shell=True,
)
subprocess.run(
"wget https://huggingface.co/sagawa/ReactionT5v2-yield/resolve/main/special_tokens_map.json",
shell=True,
)
subprocess.run(
"wget https://huggingface.co/sagawa/ReactionT5v2-yield/resolve/main/tokenizer.json",
shell=True,
)
subprocess.run(
"wget https://huggingface.co/sagawa/ReactionT5v2-yield/resolve/main/tokenizer_config.json",
shell=True,
)
if __name__ == "__main__":
CFG = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
CFG.device = device
if not os.path.exists(CFG.output_dir):
os.makedirs(CFG.output_dir)
seed_everything(seed=CFG.seed)
if CFG.download_pretrained_model:
download_pretrained_model()
CFG.model_name_or_path = "."
train = pd.read_csv(CFG.train_data_path).drop_duplicates().reset_index(drop=True)
valid = pd.read_csv(CFG.valid_data_path).drop_duplicates().reset_index(drop=True)
train = preprocess_df(train, CFG)
valid = preprocess_df(valid, CFG)
if CFG.sampling_num > 0:
train = train.sample(n=CFG.sampling_num, random_state=CFG.seed).reset_index(
drop=True
)
elif CFG.sampling_frac > 0 and CFG.sampling_frac < 1:
train = train.sample(frac=CFG.sampling_frac, random_state=CFG.seed).reset_index(
drop=True
)
if CFG.similar_reaction_data_path:
similar = preprocess_df(pd.read_csv(CFG.similar_reaction_data_path), CFG)
print(len(train))
train = pd.concat([train, similar], ignore_index=True)
print(len(train))
LOGGER = get_logger(os.path.join(CFG.output_dir, "train"))
CFG.logger = LOGGER
tokenizer = AutoTokenizer.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path,
return_tensors="pt",
)
tokenizer.save_pretrained(CFG.output_dir)
CFG.tokenizer = tokenizer
train_loop(train, valid, CFG)