ReactionT5 / task_retrosynthesis /calculate_accuracy.py
sagawa's picture
Upload 42 files
08ccc8e verified
raw
history blame
3.9 kB
import argparse
import os
import sys
import warnings
import pandas as pd
import rdkit
from rdkit import Chem
from transformers import AutoTokenizer
rdkit.RDLogger.DisableLog("rdApp.*")
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from utils import canonicalize, seed_everything
warnings.filterwarnings("ignore")
def parse_args():
parser = argparse.ArgumentParser(
description="Script for reaction retrosynthesis prediction."
)
parser.add_argument(
"--input_data",
type=str,
required=True,
help="Path to the input data.",
)
parser.add_argument(
"--target_data",
type=str,
required=True,
help="Path to the target data.",
)
parser.add_argument(
"--target_col",
type=str,
required=True,
help="Name of target column.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="sagawa/ReactionT5v2-retrosynthesis",
help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
)
parser.add_argument(
"--num_beams", type=int, default=5, help="Number of beams used for beam search."
)
parser.add_argument(
"--seed", type=int, default=42, help="Seed for reproducibility."
)
return parser.parse_args()
def remove_space(row):
for i in range(5):
row[f"{i}th"] = row[f"{i}th"].replace(" ", "")
return row
if __name__ == "__main__":
CFG = parse_args()
seed_everything(seed=CFG.seed)
tokenizer = AutoTokenizer.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path,
return_tensors="pt",
)
df = pd.read_csv(CFG.input_data)
df[[f"{i}th" for i in range(CFG.num_beams)]] = df[
[f"{i}th" for i in range(CFG.num_beams)]
].fillna(" ")
df["target"] = pd.read_csv(CFG.target_data)[CFG.target_col].values
df = df.apply(remove_space, axis=1)
top_k_invalidity = CFG.num_beams
top1, top2, top3, top5 = [], [], [], []
invalidity = []
for idx, row in df.iterrows():
target = canonicalize(row["target"])
if canonicalize(row["0th"]) == target:
top1.append(1)
top2.append(1)
top3.append(1)
top5.append(1)
elif canonicalize(row["1th"]) == target:
top1.append(0)
top2.append(1)
top3.append(1)
top5.append(1)
elif canonicalize(row["2th"]) == target:
top1.append(0)
top2.append(0)
top3.append(1)
top5.append(1)
elif canonicalize(row["3th"]) == target:
top1.append(0)
top2.append(0)
top3.append(0)
top5.append(1)
elif canonicalize(row["4th"]) == target:
top1.append(0)
top2.append(0)
top3.append(0)
top5.append(1)
else:
top1.append(0)
top2.append(0)
top3.append(0)
top5.append(0)
input_compound = row["input"]
output = [row[f"{i}th"] for i in range(top_k_invalidity)]
inval_score = 0
for ith, out in enumerate(output):
mol = Chem.MolFromSmiles(out.rstrip("."))
if not isinstance(mol, Chem.rdchem.Mol):
inval_score += 1
invalidity.append(inval_score)
print(CFG.input_data)
print(f"Top 1 accuracy: {sum(top1) / len(top1)}")
print(f"Top 2 accuracy: {sum(top2) / len(top2)}")
print(f"Top 3 accuracy: {sum(top3) / len(top3)}")
print(f"Top 5 accuracy: {sum(top5) / len(top5)}")
print(
f"Top {top_k_invalidity} Invalidity: {sum(invalidity) / (len(invalidity) * top_k_invalidity) * 100}"
)