ReactionT5 / task_forward /finetune.py
sagawa's picture
Upload 42 files
08ccc8e verified
raw
history blame
7.96 kB
import argparse
import os
import sys
import warnings
import datasets
import pandas as pd
import torch
from datasets import Dataset, DatasetDict
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
EarlyStoppingCallback,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
)
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from train import preprocess_df
from utils import filter_out, get_accuracy_score, preprocess_dataset, seed_everything
# Suppress warnings and disable progress bars
warnings.filterwarnings("ignore")
datasets.utils.logging.disable_progress_bar()
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Training script for reaction prediction model."
)
parser.add_argument(
"--train_data_path", type=str, required=True, help="Path to training data CSV."
)
parser.add_argument(
"--valid_data_path",
type=str,
required=True,
help="Path to validation data CSV.",
)
parser.add_argument(
"--similar_reaction_data_path",
type=str,
required=False,
help="Path to similar data CSV.",
)
parser.add_argument(
"--output_dir", type=str, default="t5", help="Path of the output directory."
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="sagawa/ReactionT5v2-forward",
help="The name of a pretrained model or path to a model which you want to finetune on your dataset. You can use your local models or models uploaded to hugging face.",
)
parser.add_argument(
"--debug", action="store_true", default=False, help="Enable debug mode."
)
parser.add_argument(
"--epochs", type=int, default=3, help="Number of epochs for training."
)
parser.add_argument("--lr", type=float, default=2e-5, help="Learning rate.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size.")
parser.add_argument(
"--input_max_length", type=int, default=200, help="Max input token length."
)
parser.add_argument(
"--target_max_length", type=int, default=150, help="Max target token length."
)
parser.add_argument(
"--eval_beams",
type=int,
default=5,
help="Number of beams used for beam search during evaluation.",
)
parser.add_argument(
"--target_column",
type=str,
default="PRODUCT",
help="Target column name.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.01,
help="Weight decay.",
)
parser.add_argument(
"--evaluation_strategy",
type=str,
default="epoch",
help="Evaluation strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --eval_steps.",
)
parser.add_argument(
"--eval_steps",
type=int,
help="Evaluation steps.",
)
parser.add_argument(
"--save_strategy",
type=str,
default="epoch",
help="Save strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --save_steps.",
)
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save steps.",
)
parser.add_argument(
"--logging_strategy",
type=str,
default="epoch",
help="Logging strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --logging_steps.",
)
parser.add_argument(
"--logging_steps",
type=int,
default=500,
help="Logging steps.",
)
parser.add_argument(
"--save_total_limit",
type=int,
default=2,
help="Limit of saved checkpoints.",
)
parser.add_argument(
"--fp16",
action="store_true",
default=False,
help="Enable fp16 training.",
)
parser.add_argument(
"--disable_tqdm",
action="store_true",
default=False,
help="Disable tqdm.",
)
parser.add_argument(
"--seed", type=int, default=42, help="Set seed for reproducibility."
)
parser.add_argument(
"--sampling_num",
type=int,
default=-1,
help="Number of samples used for training. If you want to use all samples, set -1.",
)
return parser.parse_args()
if __name__ == "__main__":
CFG = parse_args()
CFG.disable_tqdm = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed_everything(seed=CFG.seed)
train = preprocess_df(
filter_out(pd.read_csv(CFG.train_data_path), ["REACTANT", "PRODUCT"])
)
valid = preprocess_df(
filter_out(pd.read_csv(CFG.valid_data_path), ["REACTANT", "PRODUCT"])
)
if CFG.sampling_num > 0:
train = train.sample(n=CFG.sampling_num, random_state=CFG.seed).reset_index(
drop=True
)
if CFG.similar_reaction_data_path:
similar = preprocess_df(
filter_out(
pd.read_csv(CFG.similar_reaction_data_path), ["REACTANT", "PRODUCT"]
)
)
print(len(train))
train = pd.concat([train, similar], ignore_index=True)
print(len(train))
for col in ["REAGENT"]:
train[col] = train[col].fillna(" ")
valid[col] = valid[col].fillna(" ")
train["input"] = "REACTANT:" + train["REACTANT"] + "REAGENT:" + train["REAGENT"]
valid["input"] = "REACTANT:" + valid["REACTANT"] + "REAGENT:" + valid["REAGENT"]
if CFG.debug:
train = train[: int(len(train) / 40)].reset_index(drop=True)
valid = valid[: int(len(valid) / 40)].reset_index(drop=True)
dataset = DatasetDict(
{
"train": Dataset.from_pandas(train[["input", "PRODUCT"]]),
"validation": Dataset.from_pandas(valid[["input", "PRODUCT"]]),
}
)
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path,
return_tensors="pt",
)
CFG.tokenizer = tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(
os.path.abspath(CFG.model_name_or_path) if os.path.exists(CFG.model_name_or_path) else CFG.model_name_or_path
).to(device)
tokenized_datasets = dataset.map(
lambda examples: preprocess_dataset(examples, CFG),
batched=True,
remove_columns=dataset["train"].column_names,
)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
args = Seq2SeqTrainingArguments(
CFG.output_dir,
evaluation_strategy=CFG.evaluation_strategy,
save_strategy=CFG.save_strategy,
logging_strategy=CFG.logging_strategy,
learning_rate=CFG.lr,
per_device_train_batch_size=CFG.batch_size,
per_device_eval_batch_size=CFG.batch_size * 4,
weight_decay=CFG.weight_decay,
save_total_limit=CFG.save_total_limit,
num_train_epochs=CFG.epochs,
predict_with_generate=True,
fp16=CFG.fp16,
disable_tqdm=CFG.disable_tqdm,
push_to_hub=False,
load_best_model_at_end=True,
)
model.config.eval_beams = CFG.eval_beams
model.config.max_length = CFG.target_max_length
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=lambda eval_preds: get_accuracy_score(eval_preds, CFG),
callbacks=[EarlyStoppingCallback(early_stopping_patience=10)],
)
trainer.train()
trainer.save_model("./best_model")