File size: 7,454 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import math
import os
import pickle
import random
import time

import numpy as np
import torch
from rdkit import Chem


def seed_everything(seed=42):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True


def space_clean(row):
    row = row.replace(". ", "").replace(" .", "").replace("  ", " ")
    return row


def canonicalize(smiles):
    try:
        new_smiles = Chem.MolToSmiles(Chem.MolFromSmiles(smiles), canonical=True)
    except:
        new_smiles = None
    return new_smiles


def canonicalize_str(smiles):
    """Try to canonicalize the molecule, return empty string if fails."""
    if "%" in smiles:
        return smiles
    else:
        try:
            return canonicalize(smiles)
        except:
            return ""


def uncanonicalize(smiles):
    try:
        new_smiles = []
        for smiles_i in smiles.split("."):
            mol = Chem.MolFromSmiles(smiles_i)
            atom_indices = list(range(mol.GetNumAtoms()))
            random.shuffle(atom_indices)
            new_smiles_i = Chem.MolToSmiles(
                mol, rootedAtAtom=atom_indices[0], canonical=False
            )
            new_smiles.append(new_smiles_i)
        smiles = ".".join(new_smiles)
    except:
        smiles = None
    return smiles


def remove_atom_mapping(smi):
    mol = Chem.MolFromSmiles(smi)
    [a.SetAtomMapNum(0) for a in mol.GetAtoms()]
    smi = Chem.MolToSmiles(mol, canonical=True)
    return canonicalize(smi)


def get_logger(filename="train"):
    from logging import INFO, FileHandler, Formatter, StreamHandler, getLogger

    logger = getLogger(__name__)
    logger.setLevel(INFO)
    handler1 = StreamHandler()
    handler1.setFormatter(Formatter("%(message)s"))
    handler2 = FileHandler(filename=f"{filename}.log")
    handler2.setFormatter(Formatter("%(message)s"))
    logger.addHandler(handler1)
    logger.addHandler(handler2)
    return logger


class AverageMeter(object):
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def asMinutes(s):
    m = math.floor(s / 60)
    s -= m * 60
    return "%dm %ds" % (m, s)


def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return "%s (remain %s)" % (asMinutes(s), asMinutes(rs))


def get_optimizer_params(model, encoder_lr, decoder_lr, weight_decay=0.0):
    no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
    optimizer_parameters = [
        {
            "params": [
                p
                for n, p in model.model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "lr": encoder_lr,
            "weight_decay": weight_decay,
        },
        {
            "params": [
                p
                for n, p in model.model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "lr": encoder_lr,
            "weight_decay": 0.0,
        },
        {
            "params": [p for n, p in model.named_parameters() if "model" not in n],
            "lr": decoder_lr,
            "weight_decay": 0.0,
        },
    ]
    return optimizer_parameters


def to_cpu(obj):
    if torch.is_tensor(obj):
        return obj.to("cpu")
    elif isinstance(obj, dict):
        return {k: to_cpu(v) for k, v in obj.items()}
    elif (
        isinstance(obj, list)
        or isinstance(obj, tuple)
        or isinstance(obj, set)
        or isinstance(obj, torch.Tensor)
    ):
        return [to_cpu(v) for v in obj]
    else:
        return obj


def get_accuracy_score(eval_preds, cfg):
    preds, labels = eval_preds
    if isinstance(preds, tuple):
        preds = preds[0]

    decoded_preds = cfg.tokenizer.batch_decode(preds, skip_special_tokens=True)

    labels = np.where(labels != -100, labels, cfg.tokenizer.pad_token_id)
    decoded_labels = cfg.tokenizer.batch_decode(labels, skip_special_tokens=True)

    decoded_preds = [
        canonicalize_str(pred.strip().replace(" ", "")) for pred in decoded_preds
    ]
    decoded_labels = [
        [canonicalize_str(label.strip().replace(" ", ""))] for label in decoded_labels
    ]

    score = 0
    for i in range(len(decoded_preds)):
        if decoded_preds[i] == decoded_labels[i][0]:
            score += 1
    score /= len(decoded_preds)
    return {"accuracy": score}


def get_accuracy_score_multitask(eval_preds, cfg):
    preds, labels = eval_preds
    if isinstance(preds, tuple):
        preds = preds[0]

    special_tokens = cfg.tokenizer.special_tokens_map
    special_tokens = [
        special_tokens["eos_token"],
        special_tokens["pad_token"],
        special_tokens["unk_token"],
    ] + list(
        set(special_tokens["additional_special_tokens"])
        - set(
            [
                "0%",
                "10%",
                "20%",
                "30%",
                "40%",
                "50%",
                "60%",
                "70%",
                "80%",
                "90%",
                "100%",
            ]
        )
    )

    decoded_preds = cfg.tokenizer.batch_decode(preds, skip_special_tokens=False)
    for special_token in special_tokens:
        decoded_preds = [pred.replace(special_token, "") for pred in decoded_preds]

    labels = np.where(labels != -100, labels, cfg.tokenizer.pad_token_id)
    decoded_labels = cfg.tokenizer.batch_decode(labels, skip_special_tokens=False)
    for special_token in special_tokens:
        decoded_labels = [pred.replace(special_token, "") for pred in decoded_labels]

    decoded_preds = [
        canonicalize_str(pred.strip().replace(" ", "")) for pred in decoded_preds
    ]
    decoded_labels = [
        [canonicalize_str(label.strip().replace(" ", ""))] for label in decoded_labels
    ]

    score = 0
    for i in range(len(decoded_preds)):
        if decoded_preds[i] == decoded_labels[i][0]:
            score += 1
    score /= len(decoded_preds)
    return {"accuracy": score}


def preprocess_dataset(examples, cfg):
    inputs = examples["input"]
    targets = examples[cfg.target_column]
    model_inputs = cfg.tokenizer(
        inputs, max_length=cfg.input_max_length, truncation=True
    )
    labels = cfg.tokenizer(targets, max_length=cfg.target_max_length, truncation=True)
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs


def filter_out(df, col_names):
    for col_name in col_names:
        df = df[~df[col_name].isna()].reset_index(drop=True)
    return df


def save_pickle(path: str, contents):
    """Saves contents to a pickle file."""
    with open(path, "wb") as f:
        pickle.dump(contents, f)


def load_pickle(path: str):
    """Loads contents from a pickle file."""
    with open(path, "rb") as f:
        return pickle.load(f)


def add_new_tokens(tokenizer, file_path):
    """
    Adds new tokens to the tokenizer from a file.
    The file should contain one token per line.
    """
    with open(file_path, "r") as f:
        new_tokens = [line.strip() for line in f if line.strip()]

    tokenizer.add_tokens(new_tokens)

    return tokenizer