File size: 17,411 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import argparse
import gc
import glob
import os
import sys
import time
import warnings
from pathlib import Path

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from datasets.utils.logging import disable_progress_bar
from sklearn.metrics import mean_squared_error, r2_score
from torch.optim import AdamW
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, get_linear_schedule_with_warmup

# Append the utils module path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from generation_utils import prepare_input
from models import ReactionT5Yield
from rdkit import RDLogger
from utils import (
    AverageMeter,
    add_new_tokens,
    canonicalize,
    filter_out,
    get_logger,
    get_optimizer_params,
    seed_everything,
    space_clean,
    timeSince,
)

# Suppress warnings and logging
warnings.filterwarnings("ignore")
RDLogger.DisableLog("rdApp.*")
disable_progress_bar()
os.environ["TOKENIZERS_PARALLELISM"] = "false"


def parse_args():
    """
    Parse command line arguments.
    """
    parser = argparse.ArgumentParser(
        description="Training script for ReactionT5Yield model."
    )

    parser.add_argument(
        "--train_data_path",
        type=str,
        required=True,
        help="Path to training data CSV file.",
    )
    parser.add_argument(
        "--valid_data_path",
        type=str,
        required=True,
        help="Path to validation data CSV file.",
    )
    parser.add_argument(
        "--test_data_path",
        type=str,
        help="Path to testing data CSV file.",
    )
    parser.add_argument(
        "--CN_test_data_path",
        type=str,
        help="Path to CN testing data CSV file.",
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default="sagawa/CompoundT5",
        help="Pretrained model name or path.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="The model's name or path used for fine-tuning.",
    )
    parser.add_argument("--debug", action="store_true", help="Enable debug mode.")
    parser.add_argument(
        "--epochs", type=int, default=5, help="Number of training epochs."
    )
    parser.add_argument(
        "--patience", type=int, default=10, help="Early stopping patience."
    )
    parser.add_argument("--lr", type=float, default=5e-4, help="Learning rate.")
    parser.add_argument("--batch_size", type=int, default=5, help="Batch size.")
    parser.add_argument(
        "--input_max_length", type=int, default=400, help="Maximum input token length."
    )
    parser.add_argument(
        "--num_workers", type=int, default=4, help="Number of data loading workers."
    )
    parser.add_argument(
        "--fc_dropout",
        type=float,
        default=0.0,
        help="Dropout rate after fully connected layers.",
    )
    parser.add_argument(
        "--eps", type=float, default=1e-6, help="Epsilon for Adam optimizer."
    )
    parser.add_argument(
        "--weight_decay", type=float, default=0.05, help="Weight decay for optimizer."
    )
    parser.add_argument(
        "--max_grad_norm",
        type=int,
        default=1000,
        help="Maximum gradient norm for clipping.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Gradient accumulation steps.",
    )
    parser.add_argument(
        "--num_warmup_steps", type=int, default=0, help="Number of warmup steps."
    )
    parser.add_argument(
        "--batch_scheduler", action="store_true", help="Use batch scheduler."
    )
    parser.add_argument(
        "--print_freq", type=int, default=100, help="Logging frequency."
    )
    parser.add_argument(
        "--use_amp",
        action="store_true",
        help="Use automatic mixed precision for training.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./",
        help="Directory to save the trained model.",
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Random seed for reproducibility."
    )
    parser.add_argument(
        "--sampling_num",
        type=int,
        default=-1,
        help="Number of samples used for training. If you want to use all samples, set -1.",
    )
    parser.add_argument(
        "--sampling_frac",
        type=float,
        default=-1.0,
        help="Ratio of samples used for training. If you want to use all samples, set -1.0.",
    )
    parser.add_argument(
        "--checkpoint",
        type=str,
        help="Path to the checkpoint file for resuming training.",
    )

    return parser.parse_args()


def preprocess_df(df, cfg, drop_duplicates=True):
    """
    Preprocess the input DataFrame for training.

    Args:
        df (pd.DataFrame): Input DataFrame.
        cfg (argparse.Namespace): Configuration object.

    Returns:
        pd.DataFrame: Preprocessed DataFrame.
    """
    if "YIELD" in df.columns:
        # if max yield is 100, then normalize to [0, 1]
        if df["YIELD"].max() >= 100:
            df["YIELD"] = df["YIELD"].clip(0, 100) / 100
    else:
        df["YIELD"] = None

    for col in ["REACTANT", "PRODUCT", "CATALYST", "REAGENT", "SOLVENT"]:
        if col not in df.columns:
            df[col] = None
        df[col] = df[col].fillna(" ")

    df["REAGENT"] = df["CATALYST"] + "." + df["REAGENT"]

    for col in ["REAGENT", "REACTANT", "PRODUCT"]:
        df[col] = df[col].apply(lambda x: space_clean(x))
        df[col] = df[col].apply(lambda x: canonicalize(x) if x != " " else " ")
        df = df[~df[col].isna()].reset_index(drop=True)
        df[col] = df[col].apply(lambda x: ".".join(sorted(x.split("."))))

    df["input"] = (
        "REACTANT:"
        + df["REACTANT"]
        + "REAGENT:"
        + df["REAGENT"]
        + "PRODUCT:"
        + df["PRODUCT"]
    )
    if drop_duplicates:
        df = df.loc[df[["input", "YIELD"]].drop_duplicates().index].reset_index(
            drop=True
        )

    if cfg.debug:
        df = df.head(1000)

    return df


def preprocess_CN(df):
    """
    Preprocess the CN test DataFrame.

    Args:
        df (pd.DataFrame): Input DataFrame.

    Returns:
        pd.DataFrame: Preprocessed DataFrame.
    """
    df["REACTANT"] = df["REACTANT"].apply(lambda x: ".".join(sorted(x.split("."))))
    df["REAGENT"] = df["REAGENT"].apply(lambda x: ".".join(sorted(x.split("."))))
    df["PRODUCT"] = df["PRODUCT"].apply(lambda x: ".".join(sorted(x.split("."))))
    df["input"] = (
        "REACTANT:"
        + df["REACTANT"]
        + "REAGENT:"
        + df["REAGENT"]
        + "PRODUCT:"
        + df["PRODUCT"]
    )
    df["pair"] = df["input"]
    return df


class TrainDataset(Dataset):
    """
    Dataset class for training.
    """

    def __init__(self, cfg, df):
        self.cfg = cfg
        self.inputs = df["input"].values
        self.labels = df["YIELD"].values

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, item):
        inputs = prepare_input(self.cfg, self.inputs[item])
        label = torch.tensor(self.labels[item], dtype=torch.float)
        return inputs, label


def save_checkpoint(state, filename="checkpoint.pth.tar"):
    """
    Save model checkpoint.

    Args:
        state (dict): Checkpoint state.
        filename (str): Filename to save the checkpoint.
    """
    torch.save(state, filename)


def train_fn(train_loader, model, criterion, optimizer, epoch, scheduler, cfg):
    """
    Training function for one epoch.

    Args:
        train_loader (DataLoader): DataLoader for training data.
        model (nn.Module): Model to be trained.
        criterion (nn.Module): Loss function.
        optimizer (Optimizer): Optimizer.
        epoch (int): Current epoch.
        scheduler (Scheduler): Learning rate scheduler.
        cfg (argparse.Namespace): Configuration object.

    Returns:
        float: Average training loss.
    """
    model.train()
    scaler = torch.amp.GradScaler(enabled=cfg.use_amp)
    losses = AverageMeter()
    start = time.time()

    for step, (inputs, labels) in enumerate(train_loader):
        inputs = {k: v.to(cfg.device) for k, v in inputs.items()}
        labels = labels.to(cfg.device)
        batch_size = labels.size(0)

        with torch.autocast(cfg.device, enabled=cfg.use_amp):
            y_preds = model(inputs)
        loss = criterion(y_preds.view(-1, 1), labels.view(-1, 1))

        if cfg.gradient_accumulation_steps > 1:
            loss /= cfg.gradient_accumulation_steps

        losses.update(loss.item(), batch_size)
        scaler.scale(loss).backward()

        grad_norm = torch.nn.utils.clip_grad_norm_(
            model.parameters(), cfg.max_grad_norm
        )

        if (step + 1) % cfg.gradient_accumulation_steps == 0:
            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad()

            if cfg.batch_scheduler:
                scheduler.step()

        if step % cfg.print_freq == 0 or step == (len(train_loader) - 1):
            print(
                f"Epoch: [{epoch + 1}][{step}/{len(train_loader)}] "
                f"Elapsed {timeSince(start, float(step + 1) / len(train_loader))} "
                f"Loss: {losses.val:.4f}({losses.avg:.4f}) "
                f"Grad: {grad_norm:.4f} "
                f"LR: {scheduler.get_lr()[0]:.8f}"
            )

    return losses.avg


def valid_fn(valid_loader, model, cfg):
    """
    Validation function.

    Args:
        valid_loader (DataLoader): DataLoader for validation data.
        model (nn.Module): Model to be validated.
        cfg (argparse.Namespace): Configuration object.

    Returns:
        tuple: Validation loss and R^2 score.
    """
    model.eval()
    start = time.time()
    label_list = []
    pred_list = []

    for step, (inputs, labels) in enumerate(valid_loader):
        inputs = {k: v.to(cfg.device) for k, v in inputs.items()}
        with torch.no_grad():
            y_preds = model(inputs)
        label_list.extend(labels.tolist())
        pred_list.extend(y_preds.tolist())

        if step % cfg.print_freq == 0 or step == (len(valid_loader) - 1):
            print(
                f"EVAL: [{step}/{len(valid_loader)}] "
                f"Elapsed {timeSince(start, float(step + 1) / len(valid_loader))} "
                f"RMSE Loss: {np.sqrt(mean_squared_error(label_list, pred_list)):.4f} "
                f"R^2 Score: {r2_score(label_list, pred_list):.4f}"
            )

    return mean_squared_error(label_list, pred_list), r2_score(label_list, pred_list)


def train_loop(train_ds, valid_ds, cfg):
    """
    Training loop.

    Args:
        train_ds (pd.DataFrame): Training data.
        valid_ds (pd.DataFrame): Validation data.
    """
    train_dataset = TrainDataset(cfg, train_ds)
    valid_dataset = TrainDataset(cfg, valid_ds)

    train_loader = DataLoader(
        train_dataset,
        batch_size=cfg.batch_size,
        shuffle=True,
        num_workers=cfg.num_workers,
        pin_memory=True,
        drop_last=True,
    )
    valid_loader = DataLoader(
        valid_dataset,
        batch_size=cfg.batch_size,
        shuffle=False,
        num_workers=cfg.num_workers,
        pin_memory=True,
        drop_last=False,
    )

    if not cfg.model_name_or_path:
        model = ReactionT5Yield(cfg, config_path=None, pretrained=True)
        torch.save(model.config, os.path.join(cfg.output_dir, "config.pth"))
    else:
        model = ReactionT5Yield(
            cfg,
            config_path=os.path.join(cfg.model_name_or_path, "config.pth"),
            pretrained=False,
        )
        torch.save(model.config, os.path.join(cfg.output_dir, "config.pth"))
        pth_files = glob.glob(os.path.join(cfg.model_name_or_path, "*.pth"))
        for pth_file in pth_files:
            state = torch.load(
                pth_file, map_location=torch.device("cpu"), weights_only=False
            )
            try:
                model.load_state_dict(state)
                break
            except:
                pass
    model.to(cfg.device)

    optimizer_parameters = get_optimizer_params(
        model, encoder_lr=cfg.lr, decoder_lr=cfg.lr, weight_decay=cfg.weight_decay
    )
    optimizer = AdamW(optimizer_parameters, lr=cfg.lr, eps=cfg.eps, betas=(0.9, 0.999))

    num_train_steps = int(len(train_ds) / cfg.batch_size * cfg.epochs)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=cfg.num_warmup_steps,
        num_training_steps=num_train_steps,
    )

    criterion = nn.MSELoss(reduction="mean")
    best_loss = float("inf")
    start_epoch = 0
    es_count = 0

    if cfg.checkpoint:
        checkpoint = torch.load(cfg.checkpoint)
        model.load_state_dict(checkpoint["state_dict"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        scheduler.load_state_dict(checkpoint["scheduler"])
        best_loss = checkpoint["loss"]
        start_epoch = checkpoint["epoch"] + 1
        es_count = checkpoint["es_count"]
        del checkpoint

    for epoch in range(start_epoch, cfg.epochs):
        start_time = time.time()

        avg_loss = train_fn(
            train_loader, model, criterion, optimizer, epoch, scheduler, cfg
        )
        val_loss, val_r2_score = valid_fn(valid_loader, model, cfg)

        elapsed = time.time() - start_time

        cfg.logger.info(
            f"Epoch {epoch + 1} - avg_train_loss: {avg_loss:.4f}  val_rmse_loss: {val_loss:.4f}  val_r2_score: {val_r2_score:.4f}  time: {elapsed:.0f}s"
        )

        if val_loss < best_loss:
            es_count = 0
            best_loss = val_loss
            cfg.logger.info(
                f"Epoch {epoch + 1} - Save Lowest Loss: {best_loss:.4f} Model"
            )
            torch.save(
                model.state_dict(),
                os.path.join(
                    cfg.output_dir,
                    f"{cfg.pretrained_model_name_or_path.split('/')[-1]}_best.pth",
                ),
            )
        else:
            es_count += 1
            if es_count >= cfg.patience:
                print("Early stopping")
                break

        save_checkpoint(
            {
                "epoch": epoch,
                "state_dict": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "loss": best_loss,
                "es_count": es_count,
            },
            filename=os.path.join(cfg.output_dir, "checkpoint.pth.tar"),
        )

    torch.cuda.empty_cache()
    gc.collect()


if __name__ == "__main__":
    CFG = parse_args()
    CFG.batch_scheduler = True
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    CFG.device = device
    if not os.path.exists(CFG.output_dir):
        os.makedirs(CFG.output_dir)
    seed_everything(seed=CFG.seed)

    train = preprocess_df(
        filter_out(pd.read_csv(CFG.train_data_path), ["YIELD", "REACTANT", "PRODUCT"]),
        CFG,
    )
    valid = preprocess_df(
        filter_out(pd.read_csv(CFG.valid_data_path), ["YIELD", "REACTANT", "PRODUCT"]),
        CFG,
    )

    if CFG.CN_test_data_path:
        train_copy = preprocess_CN(train.copy())
        CN_test = preprocess_CN(pd.read_csv(CFG.CN_test_data_path))

        print(len(train))
        train = train[~train_copy["pair"].isin(CN_test["pair"])].reset_index(drop=True)
        print(len(train))

    train["pair"] = train["input"] + " - " + train["YIELD"].astype(str)
    valid["pair"] = valid["input"] + " - " + valid["YIELD"].astype(str)
    valid = valid[~valid["pair"].isin(train["pair"])].reset_index(drop=True)

    if CFG.sampling_num > 0:
        train = train.sample(n=CFG.sampling_num, random_state=CFG.seed).reset_index(
            drop=True
        )
    elif CFG.sampling_frac > 0:
        train = train.sample(frac=CFG.sampling_frac, random_state=CFG.seed).reset_index(
            drop=True
        )

    train.to_csv("train.csv", index=False)
    valid.to_csv("valid.csv", index=False)

    if CFG.test_data_path:
        test = filter_out(
            pd.read_csv(CFG.test_data_path), ["YIELD", "REACTANT", "PRODUCT"]
        )
        test = preprocess_df(test, CFG)
        test["pair"] = test["input"] + " - " + test["YIELD"].astype(str)
        test = test[~test["pair"].isin(train["pair"])].reset_index(drop=True)
        test = test.drop_duplicates(subset=["pair"]).reset_index(drop=True)
        test.to_csv("test.csv", index=False)

    LOGGER = get_logger(os.path.join(CFG.output_dir, "train"))
    CFG.logger = LOGGER

    # load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )
    tokenizer = add_new_tokens(
        tokenizer,
        Path(__file__).resolve().parent.parent / "data" / "additional_tokens.txt",
    )

    tokenizer.add_special_tokens(
        {
            "additional_special_tokens": tokenizer.additional_special_tokens
            + ["REACTANT:", "PRODUCT:", "REAGENT:"]
        }
    )
    tokenizer.save_pretrained(CFG.output_dir)
    CFG.tokenizer = tokenizer

    train_loop(train, valid, CFG)