File size: 3,565 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import argparse
import logging
import os
import sys
import warnings

import pandas as pd
import torch
from datasets.utils.logging import disable_progress_bar
from torch.utils.data import DataLoader
from transformers import AutoTokenizer

# Suppress warnings and logging
warnings.filterwarnings("ignore")
logging.disable(logging.WARNING)
disable_progress_bar()
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Append the utils module path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from generation_utils import ReactionT5Dataset
from models import ReactionT5Yield2
from prediction import inference_fn
from train import preprocess_df
from utils import seed_everything


def parse_args():
    """
    Parse command line arguments.
    """
    parser = argparse.ArgumentParser(
        description="Prediction script for ReactionT5Yield model."
    )

    parser.add_argument(
        "--input_data",
        type=str,
        required=True,
        help="Data as a CSV file that contains an 'input' column. The format of the contents of the column are like 'REACTANT:{reactants of the reaction}PRODUCT:{products of the reaction}'. If there are multiple reactants, concatenate them with '.'.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="sagawa/ReactionT5v2-yield",
        help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
    )
    parser.add_argument("--debug", action="store_true", help="Use debug mode.")
    parser.add_argument(
        "--input_max_length",
        type=int,
        default=400,
        help="Maximum token length of input.",
    )
    parser.add_argument(
        "--batch_size", type=int, default=5, required=False, help="Batch size."
    )
    parser.add_argument(
        "--num_workers", type=int, default=4, help="Number of data loading workers."
    )
    parser.add_argument(
        "--fc_dropout",
        type=float,
        default=0.0,
        help="Dropout rate after fully connected layers.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./",
        help="Directory where predictions are saved.",
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Random seed for reproducibility."
    )

    return parser.parse_args()


if __name__ == "__main__":
    CFG = parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    CFG.device = device

    if not os.path.exists(CFG.output_dir):
        os.makedirs(CFG.output_dir)

    seed_everything(seed=CFG.seed)

    CFG.tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )

    model = ReactionT5Yield2.from_pretrained(CFG.model_name_or_path)

    test_ds = pd.read_csv(CFG.input_data)
    test_ds = preprocess_df(test_ds, CFG, drop_duplicates=False)

    test_dataset = ReactionT5Dataset(CFG, test_ds)
    test_loader = DataLoader(
        test_dataset,
        batch_size=CFG.batch_size,
        shuffle=False,
        num_workers=CFG.num_workers,
        pin_memory=True,
        drop_last=False,
    )

    prediction = inference_fn(test_loader, model, CFG)

    test_ds["prediction"] = prediction
    test_ds["prediction"] = test_ds["prediction"].clip(0, 100)
    test_ds.to_csv(
        os.path.join(CFG.output_dir, "yield_prediction_output.csv"), index=False
    )