File size: 5,007 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import glob
import logging
import os
import sys
import warnings

import numpy as np
import pandas as pd
import torch
from datasets.utils.logging import disable_progress_bar
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer

# Suppress warnings and logging
warnings.filterwarnings("ignore")
logging.disable(logging.WARNING)
disable_progress_bar()
os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Append the utils module path
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from finetune import download_pretrained_model
from generation_utils import ReactionT5Dataset
from models import ReactionT5Yield
from train import preprocess_df
from utils import seed_everything


def parse_args():
    """
    Parse command line arguments.
    """
    parser = argparse.ArgumentParser(
        description="Prediction script for ReactionT5Yield model."
    )

    parser.add_argument(
        "--input_data",
        type=str,
        required=True,
        help="Data as a CSV file that contains an 'input' column. The format of the contents of the column are like 'REACTANT:{reactants of the reaction}PRODUCT:{products of the reaction}'. If there are multiple reactants, concatenate them with '.'.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
    )
    parser.add_argument(
        "--download_pretrained_model",
        action="store_true",
        help="Download finetuned model from hugging face hub and use it for prediction.",
    )
    parser.add_argument("--debug", action="store_true", help="Use debug mode.")
    parser.add_argument(
        "--input_max_length",
        type=int,
        default=300,
        help="Maximum token length of input.",
    )
    parser.add_argument(
        "--batch_size", type=int, default=5, required=False, help="Batch size."
    )
    parser.add_argument(
        "--num_workers", type=int, default=4, help="Number of data loading workers."
    )
    parser.add_argument(
        "--fc_dropout",
        type=float,
        default=0.0,
        help="Dropout rate after fully connected layers.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./",
        help="Directory where predictions are saved.",
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Random seed for reproducibility."
    )

    return parser.parse_args()


def inference_fn(test_loader, model, cfg):
    """
    Inference function.

    Args:
        test_loader (DataLoader): DataLoader for test data.
        model (nn.Module): Model for inference.
        cfg (argparse.Namespace): Configuration object.

    Returns:
        np.ndarray: Predictions.
    """
    model.eval()
    model.to(cfg.device)
    preds = []

    for inputs in tqdm(test_loader, total=len(test_loader)):
        inputs = {k: v.to(cfg.device) for k, v in inputs.items()}
        with torch.no_grad():
            y_preds = model(inputs)
        preds.append(y_preds.to("cpu").numpy())

    return np.concatenate(preds)


if __name__ == "__main__":
    CFG = parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    CFG.device = device

    if not os.path.exists(CFG.output_dir):
        os.makedirs(CFG.output_dir)

    seed_everything(seed=CFG.seed)

    if CFG.model_name_or_path is None:
        CFG.download_pretrained_model = True

    if CFG.download_pretrained_model:
        download_pretrained_model()
        CFG.model_name_or_path = "."

    CFG.tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )

    model = ReactionT5Yield(
        CFG,
        config_path=os.path.join(CFG.model_name_or_path, "config.pth"),
        pretrained=False,
    )
    pth_files = glob.glob(os.path.join(CFG.model_name_or_path, "*.pth"))
    for pth_file in pth_files:
        state = torch.load(
            pth_file,
            map_location=torch.device("cpu"),
        )
        try:
            model.load_state_dict(state)
            break
        except:
            pass

    test_ds = pd.read_csv(CFG.input_data)
    test_ds = preprocess_df(test_ds, CFG, drop_duplicates=False)

    test_dataset = ReactionT5Dataset(CFG, test_ds)
    test_loader = DataLoader(
        test_dataset,
        batch_size=CFG.batch_size,
        shuffle=False,
        num_workers=CFG.num_workers,
        pin_memory=True,
        drop_last=False,
    )

    prediction = inference_fn(test_loader, model, CFG)

    test_ds["prediction"] = prediction * 100
    test_ds["prediction"] = test_ds["prediction"].clip(0, 100)
    test_ds.to_csv(
        os.path.join(CFG.output_dir, "yield_prediction_output.csv"), index=False
    )