File size: 4,270 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import gc
import os
import sys
import warnings

import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from generation_utils import (
    ReactionT5Dataset,
    decode_output,
    save_multiple_predictions,
)
from train import preprocess_df
from utils import seed_everything

warnings.filterwarnings("ignore")


def parse_args():
    parser = argparse.ArgumentParser(
        description="Script for reaction retrosynthesis prediction."
    )
    parser.add_argument(
        "--input_data",
        type=str,
        required=True,
        help="Path to the input data.",
    )
    parser.add_argument(
        "--input_max_length",
        type=int,
        default=400,
        help="Maximum token length of input.",
    )
    parser.add_argument(
        "--output_min_length",
        type=int,
        default=1,
        help="Minimum token length of output.",
    )
    parser.add_argument(
        "--output_max_length",
        type=int,
        default=300,
        help="Maximum token length of output.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="sagawa/ReactionT5v2-retrosynthesis",
        help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
    )
    parser.add_argument(
        "--num_beams", type=int, default=5, help="Number of beams used for beam search."
    )
    parser.add_argument(
        "--num_return_sequences",
        type=int,
        default=5,
        help="Number of predictions returned. Must be less than or equal to num_beams.",
    )
    parser.add_argument(
        "--batch_size", type=int, default=5, help="Batch size for prediction."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./",
        help="Directory where predictions are saved.",
    )
    parser.add_argument(
        "--debug", action="store_true", default=False, help="Use debug mode."
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Seed for reproducibility."
    )
    return parser.parse_args()


if __name__ == "__main__":
    CFG = parse_args()
    CFG.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if not os.path.exists(CFG.output_dir):
        os.makedirs(CFG.output_dir)

    seed_everything(seed=CFG.seed)

    CFG.tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path
    ).to(CFG.device)
    model.eval()

    input_data = pd.read_csv(CFG.input_data)
    input_data = preprocess_df(input_data, drop_duplicates=False)
    dataset = ReactionT5Dataset(CFG, input_data)
    dataloader = DataLoader(
        dataset,
        batch_size=CFG.batch_size,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
        drop_last=False,
    )

    all_sequences, all_scores = [], []
    for inputs in tqdm(dataloader, total=len(dataloader)):
        inputs = {k: v.to(CFG.device) for k, v in inputs.items()}
        with torch.no_grad():
            output = model.generate(
                **inputs,
                min_length=CFG.output_min_length,
                max_length=CFG.output_max_length,
                num_beams=CFG.num_beams,
                num_return_sequences=CFG.num_return_sequences,
                return_dict_in_generate=True,
                output_scores=True,
            )
        sequences, scores = decode_output(output, CFG)
        all_sequences.extend(sequences)
        if scores:
            all_scores.extend(scores)
        del output
        torch.cuda.empty_cache()
        gc.collect()

    output_df = save_multiple_predictions(input_data, all_sequences, all_scores, CFG)

    output_df.to_csv(os.path.join(CFG.output_dir, "output.csv"), index=False)