Spaces:
Running
Running
File size: 3,901 Bytes
08ccc8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import argparse
import os
import sys
import warnings
import pandas as pd
import rdkit
from rdkit import Chem
from transformers import AutoTokenizer
rdkit.RDLogger.DisableLog("rdApp.*")
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from utils import canonicalize, seed_everything
warnings.filterwarnings("ignore")
def parse_args():
parser = argparse.ArgumentParser(
description="Script for reaction retrosynthesis prediction."
)
parser.add_argument(
"--input_data",
type=str,
required=True,
help="Path to the input data.",
)
parser.add_argument(
"--target_data",
type=str,
required=True,
help="Path to the target data.",
)
parser.add_argument(
"--target_col",
type=str,
required=True,
help="Name of target column.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="sagawa/ReactionT5v2-retrosynthesis",
help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
)
parser.add_argument(
"--num_beams", type=int, default=5, help="Number of beams used for beam search."
)
parser.add_argument(
"--seed", type=int, default=42, help="Seed for reproducibility."
)
return parser.parse_args()
def remove_space(row):
for i in range(5):
row[f"{i}th"] = row[f"{i}th"].replace(" ", "")
return row
if __name__ == "__main__":
CFG = parse_args()
seed_everything(seed=CFG.seed)
tokenizer = AutoTokenizer.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path,
return_tensors="pt",
)
df = pd.read_csv(CFG.input_data)
df[[f"{i}th" for i in range(CFG.num_beams)]] = df[
[f"{i}th" for i in range(CFG.num_beams)]
].fillna(" ")
df["target"] = pd.read_csv(CFG.target_data)[CFG.target_col].values
df = df.apply(remove_space, axis=1)
top_k_invalidity = CFG.num_beams
top1, top2, top3, top5 = [], [], [], []
invalidity = []
for idx, row in df.iterrows():
target = canonicalize(row["target"])
if canonicalize(row["0th"]) == target:
top1.append(1)
top2.append(1)
top3.append(1)
top5.append(1)
elif canonicalize(row["1th"]) == target:
top1.append(0)
top2.append(1)
top3.append(1)
top5.append(1)
elif canonicalize(row["2th"]) == target:
top1.append(0)
top2.append(0)
top3.append(1)
top5.append(1)
elif canonicalize(row["3th"]) == target:
top1.append(0)
top2.append(0)
top3.append(0)
top5.append(1)
elif canonicalize(row["4th"]) == target:
top1.append(0)
top2.append(0)
top3.append(0)
top5.append(1)
else:
top1.append(0)
top2.append(0)
top3.append(0)
top5.append(0)
input_compound = row["input"]
output = [row[f"{i}th"] for i in range(top_k_invalidity)]
inval_score = 0
for ith, out in enumerate(output):
mol = Chem.MolFromSmiles(out.rstrip("."))
if not isinstance(mol, Chem.rdchem.Mol):
inval_score += 1
invalidity.append(inval_score)
print(CFG.input_data)
print(f"Top 1 accuracy: {sum(top1) / len(top1)}")
print(f"Top 2 accuracy: {sum(top2) / len(top2)}")
print(f"Top 3 accuracy: {sum(top3) / len(top3)}")
print(f"Top 5 accuracy: {sum(top5) / len(top5)}")
print(
f"Top {top_k_invalidity} Invalidity: {sum(invalidity) / (len(invalidity) * top_k_invalidity) * 100}"
)
|