File size: 4,117 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import os
import sys
import warnings

import numpy as np
import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, T5EncoderModel

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from generation_utils import ReactionT5Dataset
from train import preprocess_df, preprocess_USPTO
from utils import filter_out, seed_everything

warnings.filterwarnings("ignore")


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_data",
        type=str,
        required=True,
        help="Path to the input data.",
    )
    parser.add_argument(
        "--test_data",
        type=str,
        required=False,
        help="Path to the test data. If provided, the duplicates will be removed from the input data.",
    )
    parser.add_argument(
        "--input_max_length",
        type=int,
        default=400,
        help="Maximum token length of input.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="sagawa/ReactionT5v2-forward",
        help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
    )
    parser.add_argument(
        "--batch_size", type=int, default=5, help="Batch size for prediction."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="./",
        help="Directory where predictions are saved.",
    )
    parser.add_argument(
        "--debug", action="store_true", default=False, help="Use debug mode."
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Seed for reproducibility."
    )
    return parser.parse_args()


def create_embedding(dataloader, model, device):
    outputs_mean = []
    model.eval()
    model.to(device)
    for inputs in dataloader:
        inputs = {k: v.to(CFG.device) for k, v in inputs.items()}
        with torch.no_grad():
            output = model(**inputs)
        last_hidden_states = output[0]
        input_mask_expanded = (
            inputs["attention_mask"]
            .unsqueeze(-1)
            .expand(last_hidden_states.size())
            .float()
        )
        sum_embeddings = torch.sum(last_hidden_states * input_mask_expanded, 1)
        sum_mask = input_mask_expanded.sum(1)
        sum_mask = torch.clamp(sum_mask, min=1e-6)
        mean_embeddings = sum_embeddings / sum_mask
        outputs_mean.append(mean_embeddings.detach().cpu().numpy())

    return outputs_mean


if __name__ == "__main__":
    CFG = parse_args()
    CFG.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    if not os.path.exists(CFG.output_dir):
        os.makedirs(CFG.output_dir)

    seed_everything(seed=CFG.seed)

    CFG.tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )
    model = T5EncoderModel.from_pretrained(CFG.model_name_or_path).to(CFG.device)
    model.eval()

    input_data = filter_out(pd.read_csv(CFG.input_data), ["REACTANT", "PRODUCT"])
    input_data = preprocess_df(input_data, drop_duplicates=False)
    if CFG.test_data:
        input_data_copy = preprocess_USPTO(input_data.copy())
        test_data = filter_out(pd.read_csv(CFG.test_data), ["REACTANT", "PRODUCT"])
        USPTO_test = preprocess_USPTO(test_data)
        input_data = input_data[
            ~input_data_copy["pair"].isin(USPTO_test["pair"])
        ].reset_index(drop=True)
    input_data.to_csv(os.path.join(CFG.output_dir, "input_data.csv"), index=False)
    dataset = ReactionT5Dataset(CFG, input_data)
    dataloader = DataLoader(
        dataset,
        batch_size=CFG.batch_size,
        shuffle=False,
        num_workers=4,
        pin_memory=True,
        drop_last=False,
    )

    outputs = create_embedding(dataloader, model, CFG.device)
    outputs = np.concatenate(outputs, axis=0)

    np.save(os.path.join(CFG.output_dir, "embedding_mean.npy"), outputs)