Spaces:
Running
Running
File size: 7,961 Bytes
08ccc8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import argparse
import os
import sys
import warnings
import datasets
import pandas as pd
import torch
from datasets import Dataset, DatasetDict
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
EarlyStoppingCallback,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
)
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from train import preprocess_df
from utils import filter_out, get_accuracy_score, preprocess_dataset, seed_everything
# Suppress warnings and disable progress bars
warnings.filterwarnings("ignore")
datasets.utils.logging.disable_progress_bar()
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Training script for reaction prediction model."
)
parser.add_argument(
"--train_data_path", type=str, required=True, help="Path to training data CSV."
)
parser.add_argument(
"--valid_data_path",
type=str,
required=True,
help="Path to validation data CSV.",
)
parser.add_argument(
"--similar_reaction_data_path",
type=str,
required=False,
help="Path to similar data CSV.",
)
parser.add_argument(
"--output_dir", type=str, default="t5", help="Path of the output directory."
)
parser.add_argument(
"--model_name_or_path",
type=str,
default="sagawa/ReactionT5v2-forward",
help="The name of a pretrained model or path to a model which you want to finetune on your dataset. You can use your local models or models uploaded to hugging face.",
)
parser.add_argument(
"--debug", action="store_true", default=False, help="Enable debug mode."
)
parser.add_argument(
"--epochs", type=int, default=3, help="Number of epochs for training."
)
parser.add_argument("--lr", type=float, default=2e-5, help="Learning rate.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size.")
parser.add_argument(
"--input_max_length", type=int, default=200, help="Max input token length."
)
parser.add_argument(
"--target_max_length", type=int, default=150, help="Max target token length."
)
parser.add_argument(
"--eval_beams",
type=int,
default=5,
help="Number of beams used for beam search during evaluation.",
)
parser.add_argument(
"--target_column",
type=str,
default="PRODUCT",
help="Target column name.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.01,
help="Weight decay.",
)
parser.add_argument(
"--evaluation_strategy",
type=str,
default="epoch",
help="Evaluation strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --eval_steps.",
)
parser.add_argument(
"--eval_steps",
type=int,
help="Evaluation steps.",
)
parser.add_argument(
"--save_strategy",
type=str,
default="epoch",
help="Save strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --save_steps.",
)
parser.add_argument(
"--save_steps",
type=int,
default=500,
help="Save steps.",
)
parser.add_argument(
"--logging_strategy",
type=str,
default="epoch",
help="Logging strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --logging_steps.",
)
parser.add_argument(
"--logging_steps",
type=int,
default=500,
help="Logging steps.",
)
parser.add_argument(
"--save_total_limit",
type=int,
default=2,
help="Limit of saved checkpoints.",
)
parser.add_argument(
"--fp16",
action="store_true",
default=False,
help="Enable fp16 training.",
)
parser.add_argument(
"--disable_tqdm",
action="store_true",
default=False,
help="Disable tqdm.",
)
parser.add_argument(
"--seed", type=int, default=42, help="Set seed for reproducibility."
)
parser.add_argument(
"--sampling_num",
type=int,
default=-1,
help="Number of samples used for training. If you want to use all samples, set -1.",
)
return parser.parse_args()
if __name__ == "__main__":
CFG = parse_args()
CFG.disable_tqdm = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed_everything(seed=CFG.seed)
train = preprocess_df(
filter_out(pd.read_csv(CFG.train_data_path), ["REACTANT", "PRODUCT"])
)
valid = preprocess_df(
filter_out(pd.read_csv(CFG.valid_data_path), ["REACTANT", "PRODUCT"])
)
if CFG.sampling_num > 0:
train = train.sample(n=CFG.sampling_num, random_state=CFG.seed).reset_index(
drop=True
)
if CFG.similar_reaction_data_path:
similar = preprocess_df(
filter_out(
pd.read_csv(CFG.similar_reaction_data_path), ["REACTANT", "PRODUCT"]
)
)
print(len(train))
train = pd.concat([train, similar], ignore_index=True)
print(len(train))
for col in ["REAGENT"]:
train[col] = train[col].fillna(" ")
valid[col] = valid[col].fillna(" ")
train["input"] = "REACTANT:" + train["REACTANT"] + "REAGENT:" + train["REAGENT"]
valid["input"] = "REACTANT:" + valid["REACTANT"] + "REAGENT:" + valid["REAGENT"]
if CFG.debug:
train = train[: int(len(train) / 40)].reset_index(drop=True)
valid = valid[: int(len(valid) / 40)].reset_index(drop=True)
dataset = DatasetDict(
{
"train": Dataset.from_pandas(train[["input", "PRODUCT"]]),
"validation": Dataset.from_pandas(valid[["input", "PRODUCT"]]),
}
)
# load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
os.path.abspath(CFG.model_name_or_path)
if os.path.exists(CFG.model_name_or_path)
else CFG.model_name_or_path,
return_tensors="pt",
)
CFG.tokenizer = tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(
os.path.abspath(CFG.model_name_or_path) if os.path.exists(CFG.model_name_or_path) else CFG.model_name_or_path
).to(device)
tokenized_datasets = dataset.map(
lambda examples: preprocess_dataset(examples, CFG),
batched=True,
remove_columns=dataset["train"].column_names,
)
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
args = Seq2SeqTrainingArguments(
CFG.output_dir,
evaluation_strategy=CFG.evaluation_strategy,
save_strategy=CFG.save_strategy,
logging_strategy=CFG.logging_strategy,
learning_rate=CFG.lr,
per_device_train_batch_size=CFG.batch_size,
per_device_eval_batch_size=CFG.batch_size * 4,
weight_decay=CFG.weight_decay,
save_total_limit=CFG.save_total_limit,
num_train_epochs=CFG.epochs,
predict_with_generate=True,
fp16=CFG.fp16,
disable_tqdm=CFG.disable_tqdm,
push_to_hub=False,
load_best_model_at_end=True,
)
model.config.eval_beams = CFG.eval_beams
model.config.max_length = CFG.target_max_length
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=lambda eval_preds: get_accuracy_score(eval_preds, CFG),
callbacks=[EarlyStoppingCallback(early_stopping_patience=10)],
)
trainer.train()
trainer.save_model("./best_model")
|