File size: 7,961 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import os
import sys
import warnings

import datasets
import pandas as pd
import torch
from datasets import Dataset, DatasetDict
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    EarlyStoppingCallback,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
)

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from train import preprocess_df
from utils import filter_out, get_accuracy_score, preprocess_dataset, seed_everything

# Suppress warnings and disable progress bars
warnings.filterwarnings("ignore")
datasets.utils.logging.disable_progress_bar()


def parse_args():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(
        description="Training script for reaction prediction model."
    )
    parser.add_argument(
        "--train_data_path", type=str, required=True, help="Path to training data CSV."
    )
    parser.add_argument(
        "--valid_data_path",
        type=str,
        required=True,
        help="Path to validation data CSV.",
    )
    parser.add_argument(
        "--similar_reaction_data_path",
        type=str,
        required=False,
        help="Path to similar data CSV.",
    )
    parser.add_argument(
        "--output_dir", type=str, default="t5", help="Path of the output directory."
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="sagawa/ReactionT5v2-forward",
        help="The name of a pretrained model or path to a model which you want to finetune on your dataset. You can use your local models or models uploaded to hugging face.",
    )
    parser.add_argument(
        "--debug", action="store_true", default=False, help="Enable debug mode."
    )
    parser.add_argument(
        "--epochs", type=int, default=3, help="Number of epochs for training."
    )
    parser.add_argument("--lr", type=float, default=2e-5, help="Learning rate.")
    parser.add_argument("--batch_size", type=int, default=32, help="Batch size.")
    parser.add_argument(
        "--input_max_length", type=int, default=200, help="Max input token length."
    )
    parser.add_argument(
        "--target_max_length", type=int, default=150, help="Max target token length."
    )
    parser.add_argument(
        "--eval_beams",
        type=int,
        default=5,
        help="Number of beams used for beam search during evaluation.",
    )
    parser.add_argument(
        "--target_column",
        type=str,
        default="PRODUCT",
        help="Target column name.",
    )
    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.01,
        help="Weight decay.",
    )
    parser.add_argument(
        "--evaluation_strategy",
        type=str,
        default="epoch",
        help="Evaluation strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --eval_steps.",
    )
    parser.add_argument(
        "--eval_steps",
        type=int,
        help="Evaluation steps.",
    )
    parser.add_argument(
        "--save_strategy",
        type=str,
        default="epoch",
        help="Save strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --save_steps.",
    )
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save steps.",
    )
    parser.add_argument(
        "--logging_strategy",
        type=str,
        default="epoch",
        help="Logging strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --logging_steps.",
    )
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Logging steps.",
    )
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=2,
        help="Limit of saved checkpoints.",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        default=False,
        help="Enable fp16 training.",
    )
    parser.add_argument(
        "--disable_tqdm",
        action="store_true",
        default=False,
        help="Disable tqdm.",
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Set seed for reproducibility."
    )
    parser.add_argument(
        "--sampling_num",
        type=int,
        default=-1,
        help="Number of samples used for training. If you want to use all samples, set -1.",
    )

    return parser.parse_args()


if __name__ == "__main__":
    CFG = parse_args()
    CFG.disable_tqdm = True
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    seed_everything(seed=CFG.seed)

    train = preprocess_df(
        filter_out(pd.read_csv(CFG.train_data_path), ["REACTANT", "PRODUCT"])
    )
    valid = preprocess_df(
        filter_out(pd.read_csv(CFG.valid_data_path), ["REACTANT", "PRODUCT"])
    )
    if CFG.sampling_num > 0:
        train = train.sample(n=CFG.sampling_num, random_state=CFG.seed).reset_index(
            drop=True
        )

    if CFG.similar_reaction_data_path:
        similar = preprocess_df(
            filter_out(
                pd.read_csv(CFG.similar_reaction_data_path), ["REACTANT", "PRODUCT"]
            )
        )
        print(len(train))
        train = pd.concat([train, similar], ignore_index=True)
        print(len(train))

    for col in ["REAGENT"]:
        train[col] = train[col].fillna(" ")
        valid[col] = valid[col].fillna(" ")
    train["input"] = "REACTANT:" + train["REACTANT"] + "REAGENT:" + train["REAGENT"]
    valid["input"] = "REACTANT:" + valid["REACTANT"] + "REAGENT:" + valid["REAGENT"]

    if CFG.debug:
        train = train[: int(len(train) / 40)].reset_index(drop=True)
        valid = valid[: int(len(valid) / 40)].reset_index(drop=True)

    dataset = DatasetDict(
        {
            "train": Dataset.from_pandas(train[["input", "PRODUCT"]]),
            "validation": Dataset.from_pandas(valid[["input", "PRODUCT"]]),
        }
    )

    # load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )
    CFG.tokenizer = tokenizer

    model = AutoModelForSeq2SeqLM.from_pretrained(
        os.path.abspath(CFG.model_name_or_path) if os.path.exists(CFG.model_name_or_path) else CFG.model_name_or_path
    ).to(device)
    tokenized_datasets = dataset.map(
        lambda examples: preprocess_dataset(examples, CFG),
        batched=True,
        remove_columns=dataset["train"].column_names,
    )

    data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

    args = Seq2SeqTrainingArguments(
        CFG.output_dir,
        evaluation_strategy=CFG.evaluation_strategy,
        save_strategy=CFG.save_strategy,
        logging_strategy=CFG.logging_strategy,
        learning_rate=CFG.lr,
        per_device_train_batch_size=CFG.batch_size,
        per_device_eval_batch_size=CFG.batch_size * 4,
        weight_decay=CFG.weight_decay,
        save_total_limit=CFG.save_total_limit,
        num_train_epochs=CFG.epochs,
        predict_with_generate=True,
        fp16=CFG.fp16,
        disable_tqdm=CFG.disable_tqdm,
        push_to_hub=False,
        load_best_model_at_end=True,
    )

    model.config.eval_beams = CFG.eval_beams
    model.config.max_length = CFG.target_max_length
    trainer = Seq2SeqTrainer(
        model,
        args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["validation"],
        data_collator=data_collator,
        tokenizer=tokenizer,
        compute_metrics=lambda eval_preds: get_accuracy_score(eval_preds, CFG),
        callbacks=[EarlyStoppingCallback(early_stopping_patience=10)],
    )

    trainer.train()
    trainer.save_model("./best_model")