File size: 3,902 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import os
import sys
import warnings

import pandas as pd
import rdkit
from rdkit import Chem
from transformers import AutoTokenizer

rdkit.RDLogger.DisableLog("rdApp.*")


sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from utils import canonicalize, seed_everything

warnings.filterwarnings("ignore")


def parse_args():
    parser = argparse.ArgumentParser(
        description="Script for reaction retrosynthesis prediction."
    )
    parser.add_argument(
        "--input_data",
        type=str,
        required=True,
        help="Path to the input data.",
    )
    parser.add_argument(
        "--target_data",
        type=str,
        required=True,
        help="Path to the target data.",
    )
    parser.add_argument(
        "--target_col",
        type=str,
        required=True,
        help="Name of target column.",
    )
    parser.add_argument(
        "--model_name_or_path",
        type=str,
        default="sagawa/ReactionT5v2-retrosynthesis",
        help="Name or path of the finetuned model for prediction. Can be a local model or one from Hugging Face.",
    )
    parser.add_argument(
        "--num_beams", type=int, default=5, help="Number of beams used for beam search."
    )
    parser.add_argument(
        "--seed", type=int, default=42, help="Seed for reproducibility."
    )
    return parser.parse_args()


def remove_space(row):
    for i in range(5):
        row[f"{i}th"] = row[f"{i}th"].replace(" ", "")
    return row


if __name__ == "__main__":
    CFG = parse_args()

    seed_everything(seed=CFG.seed)

    tokenizer = AutoTokenizer.from_pretrained(
        os.path.abspath(CFG.model_name_or_path)
        if os.path.exists(CFG.model_name_or_path)
        else CFG.model_name_or_path,
        return_tensors="pt",
    )

    df = pd.read_csv(CFG.input_data)
    df[[f"{i}th" for i in range(CFG.num_beams)]] = df[
        [f"{i}th" for i in range(CFG.num_beams)]
    ].fillna(" ")
    df["target"] = pd.read_csv(CFG.target_data)[CFG.target_col].values
    df = df.apply(remove_space, axis=1)

    top_k_invalidity = CFG.num_beams

    top1, top2, top3, top5 = [], [], [], []
    invalidity = []

    for idx, row in df.iterrows():
        target = canonicalize(row["target"])
        if canonicalize(row["0th"]) == target:
            top1.append(1)
            top2.append(1)
            top3.append(1)
            top5.append(1)
        elif canonicalize(row["1th"]) == target:
            top1.append(0)
            top2.append(1)
            top3.append(1)
            top5.append(1)
        elif canonicalize(row["2th"]) == target:
            top1.append(0)
            top2.append(0)
            top3.append(1)
            top5.append(1)
        elif canonicalize(row["3th"]) == target:
            top1.append(0)
            top2.append(0)
            top3.append(0)
            top5.append(1)
        elif canonicalize(row["4th"]) == target:
            top1.append(0)
            top2.append(0)
            top3.append(0)
            top5.append(1)
        else:
            top1.append(0)
            top2.append(0)
            top3.append(0)
            top5.append(0)

        input_compound = row["input"]
        output = [row[f"{i}th"] for i in range(top_k_invalidity)]
        inval_score = 0
        for ith, out in enumerate(output):
            mol = Chem.MolFromSmiles(out.rstrip("."))
            if not isinstance(mol, Chem.rdchem.Mol):
                inval_score += 1
        invalidity.append(inval_score)
    print(CFG.input_data)
    print(f"Top 1 accuracy: {sum(top1) / len(top1)}")
    print(f"Top 2 accuracy: {sum(top2) / len(top2)}")
    print(f"Top 3 accuracy: {sum(top3) / len(top3)}")
    print(f"Top 5 accuracy: {sum(top5) / len(top5)}")
    print(
        f"Top {top_k_invalidity} Invalidity: {sum(invalidity) / (len(invalidity) * top_k_invalidity) * 100}"
    )