Spaces:
Running
Running
File size: 6,980 Bytes
08ccc8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import torch
import torch.nn as nn
from transformers import (
AutoConfig,
AutoModel,
PreTrainedModel,
T5ForConditionalGeneration,
)
class ReactionT5Yield(nn.Module):
def __init__(self, cfg, config_path=None, pretrained=False):
super().__init__()
self.cfg = cfg
if config_path is None:
self.config = AutoConfig.from_pretrained(
self.cfg.pretrained_model_name_or_path, output_hidden_states=True
)
else:
self.config = torch.load(config_path, weights_only=False)
if pretrained:
self.model = AutoModel.from_pretrained(
self.cfg.pretrained_model_name_or_path
)
else:
self.model = AutoModel.from_config(self.config)
self.model.resize_token_embeddings(len(self.cfg.tokenizer))
self.fc_dropout1 = nn.Dropout(self.cfg.fc_dropout)
self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size // 2)
self.fc_dropout2 = nn.Dropout(self.cfg.fc_dropout)
self.fc2 = nn.Linear(self.config.hidden_size, self.config.hidden_size // 2)
self.fc3 = nn.Linear(self.config.hidden_size // 2 * 2, self.config.hidden_size)
self.fc4 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.fc5 = nn.Linear(self.config.hidden_size, 1)
self._init_weights(self.fc1)
self._init_weights(self.fc2)
self._init_weights(self.fc3)
self._init_weights(self.fc4)
self._init_weights(self.fc5)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.01)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.01)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, inputs):
encoder_outputs = self.model.encoder(**inputs)
encoder_hidden_states = encoder_outputs[0]
outputs = self.model.decoder(
input_ids=torch.full(
(inputs["input_ids"].size(0), 1),
self.config.decoder_start_token_id,
dtype=torch.long,
device=inputs["input_ids"].device,
),
encoder_hidden_states=encoder_hidden_states,
)
last_hidden_states = outputs[0]
output1 = self.fc1(
self.fc_dropout1(last_hidden_states).view(-1, self.config.hidden_size)
)
output2 = self.fc2(
encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size)
)
output = self.fc3(self.fc_dropout2(torch.hstack((output1, output2))))
output = self.fc4(output)
output = self.fc5(output)
return output
def generate_embedding(self, inputs):
encoder_outputs = self.model.encoder(**inputs)
encoder_hidden_states = encoder_outputs[0]
outputs = self.model.decoder(
input_ids=torch.full(
(inputs["input_ids"].size(0), 1),
self.config.decoder_start_token_id,
dtype=torch.long,
device=inputs["input_ids"].device,
),
encoder_hidden_states=encoder_hidden_states,
)
last_hidden_states = outputs[0]
output1 = self.fc1(
self.fc_dropout1(last_hidden_states).view(-1, self.config.hidden_size)
)
output2 = self.fc2(
encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size)
)
return torch.hstack((output1, output2))
class ReactionT5Yield2(PreTrainedModel):
config_class = AutoConfig
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = T5ForConditionalGeneration.from_pretrained(
self.config._name_or_path
)
self.model.resize_token_embeddings(self.config.vocab_size)
self.fc1 = nn.Linear(self.config.hidden_size, self.config.hidden_size // 2)
self.fc2 = nn.Linear(self.config.hidden_size, self.config.hidden_size // 2)
self.fc3 = nn.Linear(self.config.hidden_size // 2 * 2, self.config.hidden_size)
self.fc4 = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.fc5 = nn.Linear(self.config.hidden_size, 1)
self._init_weights(self.fc1)
self._init_weights(self.fc2)
self._init_weights(self.fc3)
self._init_weights(self.fc4)
self._init_weights(self.fc5)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=0.01)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=0.01)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, inputs):
encoder_outputs = self.model.encoder(**inputs)
encoder_hidden_states = encoder_outputs[0]
outputs = self.model.decoder(
input_ids=torch.full(
(inputs["input_ids"].size(0), 1),
self.config.decoder_start_token_id,
dtype=torch.long,
device=inputs["input_ids"].device,
),
encoder_hidden_states=encoder_hidden_states,
)
last_hidden_states = outputs[0]
output1 = self.fc1(last_hidden_states.view(-1, self.config.hidden_size))
output2 = self.fc2(
encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size)
)
output = self.fc3(torch.hstack((output1, output2)))
output = self.fc4(output)
output = self.fc5(output)
return output * 100
def generate_embedding(self, inputs):
encoder_outputs = self.model.encoder(**inputs)
encoder_hidden_states = encoder_outputs[0]
outputs = self.model.decoder(
input_ids=torch.full(
(inputs["input_ids"].size(0), 1),
self.config.decoder_start_token_id,
dtype=torch.long,
device=inputs["input_ids"].device,
),
encoder_hidden_states=encoder_hidden_states,
)
last_hidden_states = outputs[0]
output1 = self.fc1(last_hidden_states.view(-1, self.config.hidden_size))
output2 = self.fc2(
encoder_hidden_states[:, 0, :].view(-1, self.config.hidden_size)
)
return torch.hstack((output1, output2))
|