File size: 6,518 Bytes
08ccc8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/t5_tokenizer_model.py

import argparse
import json
import os
import sys
from typing import Iterator, List, Union

import datasets
from datasets import load_dataset
from tokenizers import (
    AddedToken,
    Regex,
    Tokenizer,
    decoders,
    normalizers,
    pre_tokenizers,
    trainers,
)
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
from transformers import AutoTokenizer, T5Config

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from utils import seed_everything

seed_everything(seed=42)

script_dir = os.path.abspath(os.path.dirname(__file__))
project_root = os.path.abspath(os.path.join(script_dir, ".."))
data_dir = os.path.join(project_root, "data")


class SentencePieceUnigramTokenizer(BaseTokenizer):
    """
    This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ .

    Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization
    Represents the Unigram algorithm, with the pretokenization used by SentencePiece
    """

    def __init__(
        self,
        replacement: str = "▁",
        add_prefix_space: bool = True,
        unk_token: Union[str, AddedToken] = "<unk>",
        eos_token: Union[str, AddedToken] = "</s>",
        pad_token: Union[str, AddedToken] = "<pad>",
    ):
        self.special_tokens = {
            "pad": {"id": 0, "token": pad_token},
            "eos": {"id": 1, "token": eos_token},
            "unk": {"id": 2, "token": unk_token},
        }

        self.special_tokens_list = [None] * len(self.special_tokens)
        for token_dict in self.special_tokens.values():
            self.special_tokens_list[token_dict["id"]] = token_dict["token"]

        tokenizer = Tokenizer(Unigram())

        tokenizer.normalizer = normalizers.Sequence(
            [
                normalizers.Nmt(),
                normalizers.NFKC(),
                normalizers.Replace(Regex(" {2,}"), " "),
                #                 normalizers.Lowercase(),
            ]
        )
        tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
            [
                pre_tokenizers.Metaspace(
                    replacement=replacement, add_prefix_space=add_prefix_space
                ),
                pre_tokenizers.Digits(individual_digits=True),
                pre_tokenizers.Punctuation(),
            ]
        )
        tokenizer.decoder = decoders.Metaspace(
            replacement=replacement, add_prefix_space=add_prefix_space
        )

        tokenizer.post_processor = TemplateProcessing(
            single=f"$A {self.special_tokens['eos']['token']}",
            special_tokens=[
                (self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])
            ],
        )

        parameters = {
            "model": "SentencePieceUnigram",
            "replacement": replacement,
            "add_prefix_space": add_prefix_space,
        }

        super().__init__(tokenizer, parameters)

    def train(
        self,
        files: Union[str, List[str]],
        vocab_size: int = 8000,
        show_progress: bool = True,
    ):
        """Train the model using the given files"""

        trainer = trainers.UnigramTrainer(
            vocab_size=vocab_size,
            special_tokens=self.special_tokens_list,
            show_progress=show_progress,
        )

        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

        self.add_unk_id()

    def train_from_iterator(
        self,
        iterator: Union[Iterator[str], Iterator[Iterator[str]]],
        vocab_size: int = 8000,
        show_progress: bool = True,
    ):
        """Train the model using the given iterator"""

        trainer = trainers.UnigramTrainer(
            vocab_size=vocab_size,
            special_tokens=self.special_tokens_list,
            show_progress=show_progress,
        )

        self._tokenizer.train_from_iterator(iterator, trainer=trainer)

        self.add_unk_id()

    def add_unk_id(self):
        tokenizer_json = json.loads(self._tokenizer.to_str())

        tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"]

        self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))


def create_normal_tokenizer(dataset, model_name):
    if isinstance(dataset, datasets.dataset_dict.DatasetDict):
        training_corpus = (
            dataset["train"][i : i + 1000]["smiles"]
            for i in range(0, len(dataset), 1000)
        )
    else:
        training_corpus = (
            dataset[i : i + 1000]["smiles"] for i in range(0, len(dataset), 1000)
        )

    if "deberta" in model_name:
        # Train tokenizer
        old_tokenizer = AutoTokenizer.from_pretrained(model_name)
        tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 1000)
    elif "t5" in model_name:
        tokenizer = SentencePieceUnigramTokenizer(
            unk_token="<unk>", eos_token="</s>", pad_token="<pad>"
        )
        tokenizer.train_from_iterator(training_corpus, 1000)

    return tokenizer


def create_character_level_tokenizer(dataset, model_name):
    df = dataset["train"].to_pandas()
    df["smiles"] = [" ".join(list(i)) for i in df["smiles"]]
    dataset = datasets.Dataset.from_pandas(df)

    tokenizer = create_normal_tokenizer(dataset, model_name)

    return tokenizer


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--use_character_level_tokenizer",
        action="store_true",
        default=False,
        required=False,
    )
    return parser.parse_args()


CFG = parse_args()


# Initialize a dataset
dataset = load_dataset(
    "csv", data_files=os.path.join(data_dir, "ZINC-canonicalized.csv")
)

if CFG.use_character_level_tokenizer:
    tokenizer = create_character_level_tokenizer(dataset, "t5")
else:
    tokenizer = create_normal_tokenizer(dataset, "t5")
# Save files to disk
tokenizer.save(os.path.join(script_dir, "CompoundT5/CompoundT5-config/tokenizer.json"))

config = T5Config.from_pretrained(
    "google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size()
)
config.save_pretrained(os.path.join(script_dir, "CompoundT5/CompoundT5-config/"))