File size: 3,696 Bytes
93a77af 178b187 33e1d55 178b187 93a77af 8f7fecd 4d6e83e 33e1d55 4d6e83e 93a77af 178b187 64c1665 178b187 93a77af c998ccf 93a77af 8f7fecd f01f3e2 93a77af 178b187 93a77af 7f1194a 93a77af 8f7fecd 93a77af 8f7fecd 93a77af f01f3e2 8f7fecd f01f3e2 93a77af 8f7fecd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import sys
import random
import os
sys.path.append("scripts/")
from foldseek_util import get_struc_seq
# Assuming 'predict_stability' is your function that predicts protein stability
def predict_stability(model_choice, organism_choice, pdb_file=None, sequence=None):
# Check if pdb_file is provided
if pdb_file:
pdb_path = pdb_file.name # Get the path of the uploaded PDB file
os.system("chmod 777 bin/foldseek")
sequence = get_foldseek_seq(pdb_path)
if not sequence:
return "Failed to extract sequence from the PDB file."
# If sequence is provided directly
if sequence:
# Add logic to predict stability using the sequence
return f"Predicted Stability using {model_choice} for {organism_choice}: Example Output with sequence {sequence[:10]}..."
else:
return "No valid input provided."
def get_foldseek_seq(pdb_path):
parsed_seqs = get_struc_seq(
"bin/foldseek",
pdb_path,
["A"],
process_id=random.randint(0, 10000000),
)["A"]
return parsed_seqs
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# PLTNUM: Protein LifeTime Neural Model
**Predict the protein half-life from its sequence or PDB file.**
"""
)
gr.Image("https://github.com/sagawatatsuya/PLTNUM/blob/main/model-image.png?raw=true", label="Model Image")
# Model and Organism selection in the same row to avoid layout issues
with gr.Row():
model_choice = gr.Radio(
choices=["SaProt", "ESM-2"],
label="Select PLTNUM's base model.",
value="SaProt"
)
organism_choice = gr.Radio(
choices=["Mouse", "Human"],
label="Select the target organism.",
value="Mouse"
)
with gr.Tabs():
with gr.TabItem("Upload PDB File"):
gr.Markdown("### Upload your PDB file:")
pdb_file = gr.File(label="Upload PDB File")
predict_button = gr.Button("Predict Stability")
prediction_output = gr.Textbox(label="Stability Prediction", interactive=False)
predict_button.click(fn=predict_stability, inputs=[model_choice, organism_choice, pdb_file], outputs=prediction_output)
with gr.TabItem("Enter Protein Sequence"):
gr.Markdown("### Enter the protein sequence:")
sequence = gr.Textbox(
label="Protein Sequence",
placeholder="Enter your protein sequence here...",
lines=8,
)
predict_button = gr.Button("Predict Stability")
prediction_output = gr.Textbox(label="Stability Prediction", interactive=False)
predict_button.click(fn=predict_stability, inputs=[model_choice, organism_choice, sequence], outputs=prediction_output)
gr.Markdown(
"""
### How to Use:
- **Select Model**: Choose between 'SaProt' or 'ESM-2' for your prediction.
- **Select Organism**: Choose between 'Mouse' or 'Human'.
- **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
- **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
- **Predict**: Click 'Predict Stability' to receive the prediction.
"""
)
gr.Markdown(
"""
### About the Tool
This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
"""
)
demo.launch()
|