Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,42 @@
|
|
1 |
-
import gradio as gr
|
2 |
import transformers
|
3 |
import librosa
|
4 |
import torch
|
|
|
5 |
|
6 |
# Load the model pipeline
|
7 |
pipe = transformers.pipeline(model='sarvamai/shuka_v1', trust_remote_code=True, device=0 if torch.cuda.is_available() else -1, torch_dtype=torch.bfloat16)
|
8 |
|
9 |
-
def
|
10 |
-
# Load
|
11 |
-
audio, sr = librosa.load(audio_file
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
{'role': 'system', 'content': system_prompt},
|
16 |
-
{'role': 'user', 'content': f'<|audio|>{user_prompt}'}
|
17 |
-
]
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
gr.Audio(type="filepath", label="Upload Audio (Indic language)"),
|
29 |
-
gr.Textbox(label="System Prompt", value="Respond naturally and informatively."),
|
30 |
-
gr.Textbox(label="User Prompt (optional)", value="")
|
31 |
-
],
|
32 |
-
outputs=gr.Textbox(label="Shuka v1 Response"),
|
33 |
-
title="Shuka v1 Demo: Multilingual Audio Understanding",
|
34 |
-
description="Upload an audio file in any Indic language, and Shuka v1 will process and respond to it.",
|
35 |
-
examples=[
|
36 |
-
["path/to/hindi_sample.wav", "Respond naturally and informatively.", "What is the main topic of this audio?"],
|
37 |
-
["path/to/tamil_sample.wav", "Translate the audio content to English.", ""],
|
38 |
-
["path/to/bengali_sample.wav", "Summarize the key points discussed in the audio.", ""]
|
39 |
-
]
|
40 |
-
)
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
1 |
import transformers
|
2 |
import librosa
|
3 |
import torch
|
4 |
+
from tqdm import tqdm
|
5 |
|
6 |
# Load the model pipeline
|
7 |
pipe = transformers.pipeline(model='sarvamai/shuka_v1', trust_remote_code=True, device=0 if torch.cuda.is_available() else -1, torch_dtype=torch.bfloat16)
|
8 |
|
9 |
+
def process_audio_batched(audio_file, system_prompt, user_prompt, batch_size=10, segment_length=10): # segment_length in seconds
|
10 |
+
# Load audio
|
11 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
12 |
|
13 |
+
# Calculate number of samples per segment
|
14 |
+
samples_per_segment = segment_length * sr
|
|
|
|
|
|
|
15 |
|
16 |
+
# Split audio into segments
|
17 |
+
segments = [audio[i:i+samples_per_segment] for i in range(0, len(audio), samples_per_segment)]
|
18 |
|
19 |
+
results = []
|
20 |
+
|
21 |
+
# Process segments in batches
|
22 |
+
for i in tqdm(range(0, len(segments), batch_size)):
|
23 |
+
batch = segments[i:i+batch_size]
|
24 |
+
|
25 |
+
turns = [
|
26 |
+
{'role': 'system', 'content': system_prompt},
|
27 |
+
{'role': 'user', 'content': f'<|audio|>{user_prompt}'}
|
28 |
+
]
|
29 |
+
|
30 |
+
batch_results = pipe([{'audio': seg, 'turns': turns, 'sampling_rate': sr} for seg in batch], max_new_tokens=512)
|
31 |
+
results.extend([result[0]['generated_text'] for result in batch_results])
|
32 |
+
|
33 |
+
# Combine results (this is a simple concatenation, you might want to implement a more sophisticated method)
|
34 |
+
return ' '.join(results)
|
35 |
|
36 |
+
# Example usage
|
37 |
+
audio_file = "path/to/your/audio/file.wav"
|
38 |
+
system_prompt = "Transcribe the audio accurately."
|
39 |
+
user_prompt = "What is being said in this audio?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
full_result = process_audio_batched(audio_file, system_prompt, user_prompt)
|
42 |
+
print(full_result)
|