Spaces:
Sleeping
Sleeping
import librosa | |
import torch | |
from tqdm import tqdm | |
import transformers | |
# Check for GPU availability | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load the model pipeline | |
pipe = transformers.pipeline( | |
model='sarvamai/shuka_v1', | |
trust_remote_code=True, | |
device=device, | |
torch_dtype=torch.float16 if device.type == 'cuda' else torch.float32 | |
) | |
def process_audio_batched(audio_file, system_prompt, user_prompt, batch_size=4, segment_length=10): | |
# Load audio | |
audio, sr = librosa.load(audio_file, sr=16000) | |
# Calculate number of samples per segment | |
samples_per_segment = segment_length * sr | |
# Split audio into segments | |
segments = [audio[i:i+samples_per_segment] for i in range(0, len(audio), samples_per_segment)] | |
full_result = [] | |
# Process segments in batches | |
for i in tqdm(range(0, len(segments), batch_size)): | |
batch = segments[i:i+batch_size] | |
turns = [ | |
{'role': 'system', 'content': system_prompt}, | |
{'role': 'user', 'content': f'<|audio|>{user_prompt}'} | |
] | |
# Move batch to GPU if available | |
batch_gpu = [torch.tensor(seg, device=device) for seg in batch] | |
batch_results = pipe([{'audio': seg, 'turns': turns, 'sampling_rate': sr} for seg in batch_gpu], max_new_tokens=512) | |
full_result.extend([result[0]['generated_text'] for result in batch_results]) | |
# Clear GPU memory | |
torch.cuda.empty_cache() | |
# Combine results | |
return ' '.join(full_result) | |
# Example usage | |
audio_file = "path/to/your/audio/file.wav" | |
system_prompt = "Transcribe the audio accurately." | |
user_prompt = "What is being said in this audio?" | |
try: | |
full_result = process_audio_batched(audio_file, system_prompt, user_prompt) | |
print(full_result) | |
except Exception as e: | |
print(f"An error occurred: {str(e)}") | |
# Additional error handling and logging can be added here |