Spaces:
Sleeping
Sleeping
import torch | |
import librosa | |
from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration | |
from gtts import gTTS | |
import gradio as gr | |
print("Using CPU for all operations") | |
# Function to safely load pipeline | |
def load_pipeline(model_name, **kwargs): | |
try: | |
return pipeline(model=model_name, device="cpu", **kwargs) | |
except Exception as e: | |
print(f"Error loading {model_name} pipeline: {e}") | |
return None | |
# Load Whisper model for speech recognition | |
def load_whisper(): | |
try: | |
processor = WhisperProcessor.from_pretrained("openai/whisper-small") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") | |
return processor, model | |
except Exception as e: | |
print(f"Error loading Whisper model: {e}") | |
return None, None | |
# Load sarvam-2b for text generation | |
def load_sarvam(): | |
return load_pipeline('sarvamai/sarvam-2b-v0.5') | |
# Attempt to load models | |
whisper_processor, whisper_model = load_whisper() | |
sarvam_pipe = load_sarvam() | |
def process_audio_input(audio): | |
if whisper_processor is None or whisper_model is None: | |
return "Error: Speech recognition model is not available. Please type your message instead." | |
try: | |
audio, sr = librosa.load(audio, sr=16000) | |
input_features = whisper_processor(audio, sampling_rate=sr, return_tensors="pt").input_features | |
predicted_ids = whisper_model.generate(input_features) | |
transcription = whisper_processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
except Exception as e: | |
return f"Error processing audio: {str(e)}. Please type your message instead." | |
def generate_response(text_input): | |
if sarvam_pipe is None: | |
return "Error: sarvam-2b model is not available. The assistant cannot generate responses at this time." | |
try: | |
response = sarvam_pipe(text_input, max_new_tokens=100, temperature=0.7, repetition_penalty=1.2)[0]['generated_text'] | |
return response | |
except Exception as e: | |
return f"Error generating response: {str(e)}" | |
def text_to_speech(text, lang='hi'): | |
try: | |
tts = gTTS(text=text, lang=lang) | |
tts.save("response.mp3") | |
return "response.mp3" | |
except Exception as e: | |
print(f"Error in text-to-speech: {str(e)}") | |
return None | |
def detect_language(text): | |
lang_codes = { | |
'bn': 'Bengali', 'gu': 'Gujarati', 'hi': 'Hindi', 'kn': 'Kannada', | |
'ml': 'Malayalam', 'mr': 'Marathi', 'or': 'Oriya', 'pa': 'Punjabi', | |
'ta': 'Tamil', 'te': 'Telugu', 'en': 'English' | |
} | |
for code, lang in lang_codes.items(): | |
if any(word in text for word in ['नमस्ते', 'હેલો', 'ನಮಸ್ಕಾರ', 'ഹലോ', 'नमस्कार', 'ਸਤ ਸ੍ਰੀ ਅਕਾਲ', 'வணக்கம்', 'నమస్కారం']): | |
return 'hi' # Default to Hindi for simplicity | |
return 'en' # Default to English if no Indic script is detected | |
def indic_language_assistant(input_type, audio_input, text_input): | |
try: | |
if input_type == "audio" and audio_input is not None: | |
transcription = process_audio_input(audio_input) | |
elif input_type == "text" and text_input: | |
transcription = text_input | |
else: | |
return "Please provide either audio or text input.", "No input provided.", None | |
response = generate_response(transcription) | |
lang = detect_language(response) | |
audio_response = text_to_speech(response, lang) | |
return transcription, response, audio_response | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
return error_message, error_message, None | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=indic_language_assistant, | |
inputs=[ | |
gr.Radio(["audio", "text"], label="Input Type", value="audio"), | |
gr.Audio(source="microphone", type="filepath", label="Speak (if audio input selected)"), | |
gr.Textbox(label="Type your message (if text input selected)") | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription/Input"), | |
gr.Textbox(label="Generated Response"), | |
gr.Audio(label="Audio Response") | |
], | |
title="Indic Language Virtual Assistant", | |
description="Speak or type in any supported Indic language or English. The assistant will respond in text and audio." | |
) | |
# Launch the app | |
iface.launch() |