Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
-
|
6 |
-
# HTML template for custom UI
|
7 |
-
HTML_TEMPLATE = """
|
8 |
-
<style>
|
9 |
-
.llama-image {
|
10 |
-
display: flex;
|
11 |
-
justify-content: center;
|
12 |
-
margin-bottom: 20px;
|
13 |
-
}
|
14 |
-
.llama-image img {
|
15 |
-
max-width: 300px;
|
16 |
-
border-radius: 10px;
|
17 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
18 |
-
}
|
19 |
-
.llama-description {
|
20 |
-
text-align: center;
|
21 |
-
font-weight: bold;
|
22 |
-
margin-top: 10px;
|
23 |
-
}
|
24 |
-
</style>
|
25 |
-
<div class="llama-image">
|
26 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg" alt="Llama">
|
27 |
-
<div class="llama-description">Llama-3.1-Storm-8B Model</div>
|
28 |
-
</div>
|
29 |
-
<h1>Llama-3.1-Storm-8B Text Generation</h1>
|
30 |
-
<p>Generate text using the powerful Llama-3.1-Storm-8B model. Enter a prompt and let the AI create!</p>
|
31 |
-
"""
|
32 |
|
33 |
# Load the model and tokenizer
|
34 |
model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
-
|
37 |
-
|
|
|
38 |
torch_dtype=torch.bfloat16,
|
39 |
device_map="auto"
|
40 |
)
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def generate_text(prompt, max_length, temperature):
|
44 |
messages = [
|
45 |
{"role": "system", "content": "You are a helpful assistant."},
|
@@ -47,10 +28,8 @@ def generate_text(prompt, max_length, temperature):
|
|
47 |
]
|
48 |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
outputs = model.generate(
|
53 |
-
**inputs,
|
54 |
max_new_tokens=max_length,
|
55 |
do_sample=True,
|
56 |
temperature=temperature,
|
@@ -58,25 +37,20 @@ def generate_text(prompt, max_length, temperature):
|
|
58 |
top_p=0.95,
|
59 |
)
|
60 |
|
61 |
-
return
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
css=".gradio-container {max-width: 800px; margin: auto;}",
|
76 |
-
)
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
gr.HTML(HTML_TEMPLATE)
|
81 |
-
]
|
82 |
-
)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load the model and tokenizer
|
6 |
model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
pipe = pipeline(
|
9 |
+
"text-generation",
|
10 |
+
model=model_name,
|
11 |
torch_dtype=torch.bfloat16,
|
12 |
device_map="auto"
|
13 |
)
|
14 |
|
15 |
+
# HTML content
|
16 |
+
HTML_CONTENT = """
|
17 |
+
<h1>Llama-3.1-Storm-8B Text Generation</h1>
|
18 |
+
<p>Generate text using the powerful Llama-3.1-Storm-8B model. Enter a prompt and let the AI create!</p>
|
19 |
+
<div class="llama-image">
|
20 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg" alt="Llama" style="width:200px; border-radius:10px;">
|
21 |
+
</div>
|
22 |
+
"""
|
23 |
+
|
24 |
def generate_text(prompt, max_length, temperature):
|
25 |
messages = [
|
26 |
{"role": "system", "content": "You are a helpful assistant."},
|
|
|
28 |
]
|
29 |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
30 |
|
31 |
+
outputs = pipe(
|
32 |
+
formatted_prompt,
|
|
|
|
|
33 |
max_new_tokens=max_length,
|
34 |
do_sample=True,
|
35 |
temperature=temperature,
|
|
|
37 |
top_p=0.95,
|
38 |
)
|
39 |
|
40 |
+
return outputs[0]['generated_text'][len(formatted_prompt):]
|
41 |
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
gr.HTML(HTML_CONTENT)
|
44 |
+
with gr.Row():
|
45 |
+
with gr.Column(scale=2):
|
46 |
+
prompt = gr.Textbox(label="Prompt", lines=5)
|
47 |
+
max_length = gr.Slider(minimum=1, maximum=500, value=128, step=1, label="Max Length")
|
48 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature")
|
49 |
+
submit_button = gr.Button("Generate")
|
50 |
+
with gr.Column(scale=2):
|
51 |
+
output = gr.Textbox(label="Generated Text", lines=10)
|
52 |
+
|
53 |
+
submit_button.click(generate_text, inputs=[prompt, max_length, temperature], outputs=[output])
|
|
|
|
|
54 |
|
55 |
+
if __name__ == "__main__":
|
56 |
+
demo.launch()
|
|
|
|
|
|