Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,9 @@ import gradio as gr
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
-
|
|
|
|
|
6 |
|
7 |
# Load the model and tokenizer
|
8 |
model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
@@ -13,14 +15,41 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
13 |
device_map="auto"
|
14 |
)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
@spaces.GPU(duration=120)
|
17 |
-
def generate_text(prompt, max_length, temperature):
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [
|
19 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
20 |
{"role": "user", "content": prompt}
|
21 |
]
|
|
|
22 |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
23 |
-
|
24 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
25 |
|
26 |
outputs = model.generate(
|
@@ -34,133 +63,248 @@ def generate_text(prompt, max_length, temperature):
|
|
34 |
|
35 |
return tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
36 |
|
37 |
-
|
38 |
-
# Custom CSS
|
39 |
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
body {
|
41 |
-
background-color:
|
42 |
-
color:
|
43 |
-
font-family: '
|
44 |
}
|
|
|
45 |
.container {
|
46 |
-
max-width:
|
47 |
margin: auto;
|
48 |
padding: 20px;
|
49 |
}
|
|
|
50 |
.gradio-container {
|
51 |
-
background-color:
|
52 |
border-radius: 15px;
|
53 |
-
box-shadow: 0 4px
|
54 |
}
|
|
|
55 |
.header {
|
56 |
-
background
|
57 |
-
padding:
|
58 |
border-radius: 15px 15px 0 0;
|
59 |
text-align: center;
|
60 |
-
margin-bottom:
|
|
|
|
|
61 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
.header h1 {
|
63 |
-
color:
|
64 |
-
font-size: 2.
|
65 |
-
margin-bottom:
|
|
|
|
|
66 |
}
|
|
|
67 |
.header p {
|
68 |
color: #a0a0a0;
|
|
|
|
|
|
|
69 |
}
|
70 |
-
|
71 |
-
max-width: 300px;
|
72 |
-
border-radius: 10px;
|
73 |
-
margin: 15px auto;
|
74 |
-
display: block;
|
75 |
-
}
|
76 |
.input-group, .output-group {
|
77 |
-
background-color:
|
78 |
-
padding:
|
79 |
-
border-radius:
|
80 |
-
margin-bottom:
|
|
|
|
|
81 |
}
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
}
|
|
|
86 |
.generate-btn {
|
87 |
-
background
|
88 |
color: white !important;
|
89 |
border: none !important;
|
90 |
-
border-radius:
|
91 |
-
padding:
|
92 |
-
font-size:
|
93 |
cursor: pointer !important;
|
94 |
-
transition:
|
95 |
}
|
|
|
96 |
.generate-btn:hover {
|
97 |
-
|
|
|
98 |
}
|
|
|
99 |
.example-prompts {
|
100 |
background-color: #1f2b47;
|
101 |
-
padding:
|
102 |
-
border-radius:
|
103 |
-
margin-bottom:
|
|
|
104 |
}
|
|
|
105 |
.example-prompts h3 {
|
106 |
-
color:
|
107 |
-
margin-bottom:
|
|
|
108 |
}
|
|
|
109 |
.example-prompts ul {
|
110 |
-
list-style
|
111 |
-
padding
|
|
|
|
|
|
|
112 |
}
|
|
|
113 |
.example-prompts li {
|
114 |
-
|
|
|
|
|
115 |
cursor: pointer;
|
116 |
-
transition:
|
|
|
117 |
}
|
|
|
118 |
.example-prompts li:hover {
|
119 |
-
color: #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
}
|
121 |
"""
|
122 |
|
123 |
-
# Example prompts
|
124 |
example_prompts = [
|
125 |
-
"
|
126 |
-
"
|
127 |
-
"
|
128 |
-
"
|
129 |
-
"
|
|
|
|
|
|
|
130 |
]
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
with gr.Blocks(css=css) as iface:
|
135 |
-
gr.HTML(
|
136 |
-
"""
|
137 |
<div class="header">
|
138 |
-
<h1>Llama-3.1-Storm-8B
|
139 |
-
<p>
|
140 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg"
|
|
|
|
|
141 |
</div>
|
142 |
-
|
143 |
-
)
|
144 |
|
145 |
-
with gr.
|
146 |
-
with gr.
|
147 |
-
gr.
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
162 |
-
for button in example_buttons:
|
163 |
-
button.click(lambda x: x, inputs=[button], outputs=[prompt])
|
164 |
|
165 |
-
# Launch the app
|
166 |
iface.launch()
|
|
|
2 |
import spaces
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from googlesearch import search # Or use Serper API for better results
|
6 |
+
import requests
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
|
9 |
# Load the model and tokenizer
|
10 |
model_name = "akjindal53244/Llama-3.1-Storm-8B"
|
|
|
15 |
device_map="auto"
|
16 |
)
|
17 |
|
18 |
+
def fetch_web_content(url):
|
19 |
+
try:
|
20 |
+
response = requests.get(url, timeout=10)
|
21 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
22 |
+
return ' '.join(p.get_text() for p in soup.find_all('p'))
|
23 |
+
except:
|
24 |
+
return "Could not fetch content from this URL"
|
25 |
+
|
26 |
+
def web_search(query, num_results=3):
|
27 |
+
try:
|
28 |
+
results = []
|
29 |
+
for j in search(query, num_results=num_results, advanced=True):
|
30 |
+
content = fetch_web_content(j.url)
|
31 |
+
results.append({
|
32 |
+
"title": j.title,
|
33 |
+
"url": j.url,
|
34 |
+
"content": content[:1000] # Limit content length
|
35 |
+
})
|
36 |
+
return results
|
37 |
+
except:
|
38 |
+
return []
|
39 |
+
|
40 |
@spaces.GPU(duration=120)
|
41 |
+
def generate_text(prompt, max_length, temperature, use_web):
|
42 |
+
if use_web:
|
43 |
+
search_results = web_search(prompt)
|
44 |
+
context = "\n".join([f"Source: {res['url']}\nContent: {res['content']}" for res in search_results])
|
45 |
+
prompt = f"Web Context:\n{context}\n\nUser Query: {prompt}"
|
46 |
+
|
47 |
messages = [
|
48 |
+
{"role": "system", "content": "You are a helpful assistant with web search capabilities."},
|
49 |
{"role": "user", "content": prompt}
|
50 |
]
|
51 |
+
|
52 |
formatted_prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
|
|
53 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
54 |
|
55 |
outputs = model.generate(
|
|
|
63 |
|
64 |
return tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
65 |
|
66 |
+
# Enhanced CSS
|
|
|
67 |
css = """
|
68 |
+
:root {
|
69 |
+
--primary: #e94560;
|
70 |
+
--secondary: #1a1a2e;
|
71 |
+
--background: #16213e;
|
72 |
+
--text: #e0e0e0;
|
73 |
+
}
|
74 |
+
|
75 |
body {
|
76 |
+
background-color: var(--background);
|
77 |
+
color: var(--text);
|
78 |
+
font-family: 'Inter', sans-serif;
|
79 |
}
|
80 |
+
|
81 |
.container {
|
82 |
+
max-width: 1200px;
|
83 |
margin: auto;
|
84 |
padding: 20px;
|
85 |
}
|
86 |
+
|
87 |
.gradio-container {
|
88 |
+
background-color: var(--background);
|
89 |
border-radius: 15px;
|
90 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3);
|
91 |
}
|
92 |
+
|
93 |
.header {
|
94 |
+
background: linear-gradient(135deg, #0f3460 0%, #1a1a2e 100%);
|
95 |
+
padding: 2rem;
|
96 |
border-radius: 15px 15px 0 0;
|
97 |
text-align: center;
|
98 |
+
margin-bottom: 2rem;
|
99 |
+
position: relative;
|
100 |
+
overflow: hidden;
|
101 |
}
|
102 |
+
|
103 |
+
.header::before {
|
104 |
+
content: '';
|
105 |
+
position: absolute;
|
106 |
+
top: -50%;
|
107 |
+
left: -50%;
|
108 |
+
width: 200%;
|
109 |
+
height: 200%;
|
110 |
+
background: radial-gradient(circle, rgba(233,69,96,0.1) 0%, transparent 70%);
|
111 |
+
animation: pulse 8s infinite;
|
112 |
+
}
|
113 |
+
|
114 |
+
@keyframes pulse {
|
115 |
+
0% { transform: scale(0.8); opacity: 0.5; }
|
116 |
+
50% { transform: scale(1.2); opacity: 0.2; }
|
117 |
+
100% { transform: scale(0.8); opacity: 0.5; }
|
118 |
+
}
|
119 |
+
|
120 |
.header h1 {
|
121 |
+
color: var(--primary);
|
122 |
+
font-size: 2.8rem;
|
123 |
+
margin-bottom: 1rem;
|
124 |
+
font-weight: 700;
|
125 |
+
position: relative;
|
126 |
}
|
127 |
+
|
128 |
.header p {
|
129 |
color: #a0a0a0;
|
130 |
+
font-size: 1.1rem;
|
131 |
+
max-width: 800px;
|
132 |
+
margin: 0 auto;
|
133 |
}
|
134 |
+
|
|
|
|
|
|
|
|
|
|
|
135 |
.input-group, .output-group {
|
136 |
+
background-color: var(--secondary);
|
137 |
+
padding: 2rem;
|
138 |
+
border-radius: 12px;
|
139 |
+
margin-bottom: 2rem;
|
140 |
+
border: 1px solid #2d2d4d;
|
141 |
+
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
142 |
}
|
143 |
+
|
144 |
+
.input-group:hover, .output-group:hover {
|
145 |
+
transform: translateY(-2px);
|
146 |
+
box-shadow: 0 6px 15px rgba(0, 0, 0, 0.3);
|
147 |
}
|
148 |
+
|
149 |
.generate-btn {
|
150 |
+
background: linear-gradient(135deg, var(--primary) 0%, #c81e45 100%) !important;
|
151 |
color: white !important;
|
152 |
border: none !important;
|
153 |
+
border-radius: 8px !important;
|
154 |
+
padding: 12px 28px !important;
|
155 |
+
font-size: 1.1rem !important;
|
156 |
cursor: pointer !important;
|
157 |
+
transition: transform 0.2s ease, box-shadow 0.2s ease !important;
|
158 |
}
|
159 |
+
|
160 |
.generate-btn:hover {
|
161 |
+
transform: scale(1.05);
|
162 |
+
box-shadow: 0 4px 15px rgba(233, 69, 96, 0.4) !important;
|
163 |
}
|
164 |
+
|
165 |
.example-prompts {
|
166 |
background-color: #1f2b47;
|
167 |
+
padding: 1.5rem;
|
168 |
+
border-radius: 12px;
|
169 |
+
margin-bottom: 2rem;
|
170 |
+
border: 1px solid #3d3d6d;
|
171 |
}
|
172 |
+
|
173 |
.example-prompts h3 {
|
174 |
+
color: var(--primary);
|
175 |
+
margin-bottom: 1rem;
|
176 |
+
font-size: 1.3rem;
|
177 |
}
|
178 |
+
|
179 |
.example-prompts ul {
|
180 |
+
list-style: none;
|
181 |
+
padding: 0;
|
182 |
+
display: grid;
|
183 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
184 |
+
gap: 1rem;
|
185 |
}
|
186 |
+
|
187 |
.example-prompts li {
|
188 |
+
background-color: var(--secondary);
|
189 |
+
padding: 1rem;
|
190 |
+
border-radius: 8px;
|
191 |
cursor: pointer;
|
192 |
+
transition: all 0.2s ease;
|
193 |
+
border: 1px solid #3d3d6d;
|
194 |
}
|
195 |
+
|
196 |
.example-prompts li:hover {
|
197 |
+
background-color: #2d2d4d;
|
198 |
+
transform: translateY(-2px);
|
199 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
|
200 |
+
}
|
201 |
+
|
202 |
+
.param-group {
|
203 |
+
display: grid;
|
204 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
205 |
+
gap: 1.5rem;
|
206 |
+
margin-bottom: 1.5rem;
|
207 |
+
}
|
208 |
+
|
209 |
+
.web-toggle {
|
210 |
+
display: flex;
|
211 |
+
align-items: center;
|
212 |
+
gap: 1rem;
|
213 |
+
padding: 1rem;
|
214 |
+
background-color: var(--secondary);
|
215 |
+
border-radius: 8px;
|
216 |
+
margin-bottom: 1.5rem;
|
217 |
+
}
|
218 |
+
|
219 |
+
.output-controls {
|
220 |
+
display: flex;
|
221 |
+
gap: 1rem;
|
222 |
+
margin-top: 1.5rem;
|
223 |
+
}
|
224 |
+
|
225 |
+
#copy-btn {
|
226 |
+
background: #2d2d4d !important;
|
227 |
+
border: 1px solid #3d3d6d !important;
|
228 |
+
}
|
229 |
+
|
230 |
+
#copy-btn:hover {
|
231 |
+
background: #3d3d6d !important;
|
232 |
}
|
233 |
"""
|
234 |
|
|
|
235 |
example_prompts = [
|
236 |
+
"Explain quantum computing in simple terms",
|
237 |
+
"Latest developments in AI research",
|
238 |
+
"How does blockchain technology work?",
|
239 |
+
"Compare React and Vue.js frameworks",
|
240 |
+
"Best practices for Python async programming",
|
241 |
+
"Impact of climate change on marine life",
|
242 |
+
"Recent advancements in cancer treatment",
|
243 |
+
"Guide to starting a tech startup in 2024"
|
244 |
]
|
245 |
|
246 |
+
with gr.Blocks(css=css, theme=gr.themes.Default()) as iface:
|
247 |
+
gr.HTML("""
|
|
|
|
|
|
|
248 |
<div class="header">
|
249 |
+
<h1>Llama-3.1-Storm-8B AI Assistant</h1>
|
250 |
+
<p>Enhanced with real-time web search capabilities and multimodal interaction</p>
|
251 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/tmOlbERGKP7JSODa6T06J.jpeg"
|
252 |
+
alt="Llama"
|
253 |
+
style="border-radius: 12px; margin: 1.5rem 0;">
|
254 |
</div>
|
255 |
+
""")
|
|
|
256 |
|
257 |
+
with gr.Tabs():
|
258 |
+
with gr.TabItem("Chat Assistant"):
|
259 |
+
with gr.Row():
|
260 |
+
with gr.Column(scale=3):
|
261 |
+
with gr.Group(elem_classes="example-prompts"):
|
262 |
+
gr.Markdown("## Example Queries")
|
263 |
+
example_btns = [gr.Button(prompt, scale=0) for prompt in example_prompts]
|
264 |
|
265 |
+
with gr.Group(elem_classes="input-group"):
|
266 |
+
prompt = gr.Textbox(label="Your Query", placeholder="Enter your question or prompt...",
|
267 |
+
lines=5, elem_id="main-input")
|
268 |
+
|
269 |
+
with gr.Group(elem_classes="web-toggle"):
|
270 |
+
web_search_toggle = gr.Checkbox(label="Enable Web Search", value=False)
|
271 |
+
num_results = gr.Slider(1, 5, value=3, step=1, label="Search Results to Use")
|
272 |
+
|
273 |
+
with gr.Group(elem_classes="param-group"):
|
274 |
+
max_length = gr.Slider(32, 1024, value=256, step=32, label="Response Length")
|
275 |
+
temperature = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Creativity")
|
276 |
+
|
277 |
+
generate_btn = gr.Button("Generate Response", elem_classes="generate-btn")
|
278 |
|
279 |
+
with gr.Column(scale=2):
|
280 |
+
with gr.Group(elem_classes="output-group"):
|
281 |
+
output = gr.Textbox(label="Generated Response", lines=12, elem_id="main-output")
|
282 |
+
with gr.Group(elem_classes="output-controls"):
|
283 |
+
copy_btn = gr.Button("Copy to Clipboard", elem_id="copy-btn")
|
284 |
+
clear_btn = gr.Button("Clear Output", elem_id="copy-btn")
|
285 |
|
286 |
+
with gr.TabItem("Web Search Results"):
|
287 |
+
web_results = gr.JSON(label="Search Results Preview", visible=True)
|
288 |
+
|
289 |
+
# Event handling
|
290 |
+
generate_btn.click(
|
291 |
+
generate_text,
|
292 |
+
inputs=[prompt, max_length, temperature, web_search_toggle],
|
293 |
+
outputs=output
|
294 |
+
).then(
|
295 |
+
lambda q: web_search(q) if q else [],
|
296 |
+
inputs=[prompt],
|
297 |
+
outputs=web_results
|
298 |
+
)
|
299 |
+
|
300 |
+
for btn in example_btns:
|
301 |
+
btn.click(lambda x: x, inputs=[btn], outputs=[prompt])
|
302 |
+
|
303 |
+
copy_btn.click(lambda x: x, inputs=[output], outputs=[]).then(
|
304 |
+
None,
|
305 |
+
_js="() => navigator.clipboard.writeText(document.getElementById('main-output').value)"
|
306 |
+
)
|
307 |
|
308 |
+
clear_btn.click(lambda: "", outputs=[output])
|
|
|
|
|
309 |
|
|
|
310 |
iface.launch()
|