saakshigupta commited on
Commit
e05ed33
·
verified ·
1 Parent(s): 5bfd6aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +309 -310
app.py CHANGED
@@ -693,64 +693,18 @@ def main():
693
  if 'chat_history' not in st.session_state:
694
  st.session_state.chat_history = []
695
 
696
- # Display Hugging Face Spaces information if debug mode is on
697
- if st.session_state.debug:
698
- with st.expander("Hugging Face Spaces Debugging Information", expanded=True):
699
- st.markdown("""
700
- ### Common Issues with Hugging Face Spaces
701
-
702
- 1. **403/404 Errors**: Often caused by permission issues when accessing files or external resources.
703
-
704
- 2. **Memory Limits**: Free spaces have limited memory (16GB). Large models may cause OOM errors.
705
-
706
- 3. **Disk Space**: Limited to 10GB for persistent storage.
707
-
708
- 4. **Network Restrictions**: Some external URLs might be blocked or restricted.
709
-
710
- ### Accessing Logs
711
- To see detailed error logs in Hugging Face Spaces:
712
-
713
- 1. Go to your Space dashboard
714
- 2. Click on "Logs" in the left sidebar
715
- 3. Check both "Build logs" and "Running logs" tabs
716
-
717
- In the running logs, look for Python tracebacks or error messages.
718
-
719
- ### This App's Setup
720
- - All image processing is now done in-memory to avoid file permission issues
721
- - Debug logging is available through this interface
722
- - For large model loading issues, try using smaller models or increasing RAM allocation
723
- """)
724
-
725
- # Add a test connection button
726
- if st.button("Test Network Connection"):
727
- try:
728
- import requests
729
- test_urls = [
730
- "https://huggingface.co/",
731
- "https://www.google.com/",
732
- "https://jsonplaceholder.typicode.com/todos/1"
733
- ]
734
-
735
- for url in test_urls:
736
- try:
737
- response = requests.get(url, timeout=5)
738
- st.write(f"✅ {url}: Status {response.status_code}")
739
- except Exception as e:
740
- st.write(f"❌ {url}: Error - {str(e)}")
741
- except Exception as e:
742
- st.error(f"Could not perform connection test: {str(e)}")
743
 
744
- # Create expanders for each stage
745
- with st.expander("Stage 1: Model Loading", expanded=True):
746
- st.write("Please load the models using the buttons below:")
747
 
748
- # Button for loading models
749
- xception_col, blip_col, llm_col = st.columns(3)
750
-
751
- with xception_col:
752
  if not st.session_state.xception_model_loaded:
753
- if st.button("📥 Load Xception Model for Detection", type="primary"):
754
  # Load Xception model
755
  model, device = load_detection_model_xception()
756
  if model is not None:
@@ -763,7 +717,226 @@ def main():
763
  else:
764
  st.success("✅ Xception model loaded and ready!")
765
 
766
- with blip_col:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767
  if not st.session_state.blip_model_loaded:
768
  if st.button("📥 Load BLIP for Captioning", type="primary"):
769
  # Load BLIP models
@@ -779,10 +952,65 @@ def main():
779
  st.error("❌ Failed to load BLIP models.")
780
  else:
781
  st.success("✅ BLIP captioning models loaded and ready!")
 
 
 
 
 
 
 
782
 
783
- with llm_col:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784
  if not st.session_state.llm_model_loaded:
785
- if st.button("📥 Load Vision LLM for Analysis", type="primary"):
786
  # Load LLM model
787
  model, tokenizer = load_llm_model()
788
  if model is not None and tokenizer is not None:
@@ -794,263 +1022,23 @@ def main():
794
  st.error("❌ Failed to load Vision LLM.")
795
  else:
796
  st.success("✅ Vision LLM loaded and ready!")
797
-
798
- # Image upload section
799
- with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
800
- st.subheader("Upload an Image")
801
-
802
- # Add alternative upload methods
803
- upload_tab1, upload_tab2 = st.tabs(["File Upload", "URL Input"])
804
-
805
- uploaded_image = None
806
 
807
- with upload_tab1:
808
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
809
- if uploaded_file is not None:
810
- try:
811
- # Simple direct approach - load the image directly
812
- image = Image.open(uploaded_file).convert("RGB")
813
- uploaded_image = image
814
- st.session_state.upload_method = "file"
815
- except Exception as e:
816
- st.error(f"Error loading image: {str(e)}")
817
- import traceback
818
- st.error(traceback.format_exc())
819
-
820
- with upload_tab2:
821
- url = st.text_input("Enter image URL:")
822
- if url and url.strip():
823
- try:
824
- import requests
825
- # Simplified URL handling with more robust approach
826
- headers = {
827
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
828
- 'Accept': 'image/jpeg, image/png, image/*, */*',
829
- 'Referer': 'https://huggingface.co/'
830
- }
831
-
832
- # Try three different methods to handle various API restrictions
833
- try_methods = True
834
-
835
- # Method 1: Direct requests
836
- if try_methods:
837
- try:
838
- response = requests.get(url, stream=True, headers=headers, timeout=10)
839
- if response.status_code == 200 and 'image' in response.headers.get('Content-Type', ''):
840
- try:
841
- image = Image.open(io.BytesIO(response.content)).convert("RGB")
842
- uploaded_image = image
843
- st.session_state.upload_method = "url_direct"
844
- try_methods = False
845
- st.success("✅ Image loaded via direct request")
846
- except Exception as e:
847
- st.warning(f"Direct method received data but couldn't process as image: {str(e)}")
848
- else:
849
- st.info(f"Direct method failed: Status {response.status_code}, trying alternative method...")
850
- except Exception as e:
851
- st.info(f"Direct method error: {str(e)}, trying alternative method...")
852
-
853
- # Method 2: Use Python's urllib as fallback
854
- if try_methods:
855
- try:
856
- import urllib.request
857
- from urllib.error import HTTPError
858
-
859
- opener = urllib.request.build_opener()
860
- opener.addheaders = [('User-agent', headers['User-Agent'])]
861
- urllib.request.install_opener(opener)
862
-
863
- with urllib.request.urlopen(url, timeout=10) as response:
864
- image_data = response.read()
865
- image = Image.open(io.BytesIO(image_data)).convert("RGB")
866
- uploaded_image = image
867
- st.session_state.upload_method = "url_urllib"
868
- try_methods = False
869
- st.success("✅ Image loaded via urllib")
870
- except HTTPError as e:
871
- st.info(f"urllib method failed: HTTP error {e.code}, trying next method...")
872
- except Exception as e:
873
- st.info(f"urllib method error: {str(e)}, trying next method...")
874
-
875
- # Method 3: Use a proxy service as last resort
876
- if try_methods:
877
- try:
878
- # This uses an image proxy service to bypass CORS issues
879
- # Only as last resort since it depends on external service
880
- proxy_url = f"https://images.weserv.nl/?url={url}"
881
- response = requests.get(proxy_url, stream=True, timeout=10)
882
- if response.status_code == 200:
883
- image = Image.open(io.BytesIO(response.content)).convert("RGB")
884
- uploaded_image = image
885
- st.session_state.upload_method = "url_proxy"
886
- try_methods = False
887
- st.success("✅ Image loaded via proxy service")
888
- else:
889
- st.error(f"All methods failed to load the image from URL. Last status: {response.status_code}")
890
- except Exception as e:
891
- st.error(f"All methods failed. Final error: {str(e)}")
892
-
893
- if not uploaded_image:
894
- st.error("Failed to load image using all available methods.")
895
-
896
- except Exception as e:
897
- st.error(f"Error processing URL: {str(e)}")
898
- if st.session_state.debug:
899
- import traceback
900
- st.error(traceback.format_exc())
901
-
902
- # If we have an uploaded image, process it
903
- if uploaded_image is not None:
904
- # Display the image
905
- image = uploaded_image
906
- col1, col2 = st.columns([1, 2])
907
- with col1:
908
- st.image(image, caption="Uploaded Image", width=300)
909
-
910
- # Generate detailed caption for original image if BLIP model is loaded
911
- if st.session_state.blip_model_loaded:
912
- with st.spinner("Generating image description..."):
913
- caption = generate_image_caption(
914
- image,
915
- st.session_state.original_processor,
916
- st.session_state.original_model
917
- )
918
- st.session_state.image_caption = caption
919
 
920
- # Continue with your existing code for the Xception model analysis
921
- if st.session_state.xception_model_loaded:
922
- try:
923
- with st.spinner("Analyzing image with Xception model..."):
924
- # Preprocess image for Xception
925
- input_tensor, original_image, face_box = preprocess_image_xception(image)
926
-
927
- if input_tensor is None:
928
- st.error("Failed to preprocess image. Please try another image.")
929
- st.stop()
930
-
931
- # Get device and model
932
- device = st.session_state.device
933
- model = st.session_state.xception_model
934
-
935
- # Ensure model is in eval mode
936
- model.eval()
937
-
938
- # Move tensor to device
939
- input_tensor = input_tensor.to(device)
940
-
941
- # Forward pass with proper error handling
942
- try:
943
- with torch.no_grad():
944
- logits = model(input_tensor)
945
- probabilities = torch.softmax(logits, dim=1)[0]
946
- pred_class = torch.argmax(probabilities).item()
947
- confidence = probabilities[pred_class].item()
948
-
949
- # Explicit class mapping - adjust if needed based on your model
950
- pred_label = "Fake" if pred_class == 0 else "Real"
951
- except Exception as e:
952
- st.error(f"Error in model inference: {str(e)}")
953
- import traceback
954
- st.error(traceback.format_exc())
955
- # Set default values
956
- pred_class = 0
957
- confidence = 0.5
958
- pred_label = "Error in prediction"
959
-
960
- # Display results
961
- with col2:
962
- st.markdown("### Detection Result")
963
- st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
964
-
965
- # Display face box on image if detected
966
- if face_box:
967
- img_to_show = original_image.copy()
968
- img_draw = np.array(img_to_show)
969
- x, y, w, h = face_box
970
- cv2.rectangle(img_draw, (x, y), (x + w, y + h), (0, 255, 0), 2)
971
- st.image(Image.fromarray(img_draw), caption="Detected Face", width=300)
972
-
973
- # GradCAM visualization with error handling
974
- st.subheader("GradCAM Visualization")
975
- try:
976
- cam, overlay, comparison, detected_face_box = process_image_with_xception_gradcam(
977
- image, model, device, pred_class
978
- )
979
-
980
- if comparison:
981
- # Display GradCAM results (controlled size)
982
- st.image(comparison, caption="Original | CAM | Overlay", width=700)
983
-
984
- # Save for later use
985
- st.session_state.comparison_image = comparison
986
- else:
987
- st.error("GradCAM visualization failed - comparison image not generated")
988
-
989
- # Generate caption for GradCAM overlay image if BLIP model is loaded
990
- if st.session_state.blip_model_loaded and overlay:
991
- with st.spinner("Analyzing GradCAM visualization..."):
992
- gradcam_caption = generate_gradcam_caption(
993
- overlay,
994
- st.session_state.finetuned_processor,
995
- st.session_state.finetuned_model
996
- )
997
- st.session_state.gradcam_caption = gradcam_caption
998
-
999
- # Display the caption directly here as well for immediate feedback
1000
- st.markdown("### GradCAM Analysis")
1001
- st.markdown(gradcam_caption)
1002
- except Exception as e:
1003
- st.error(f"Error generating GradCAM: {str(e)}")
1004
- import traceback
1005
- st.error(traceback.format_exc())
1006
-
1007
- # Save results in session state for LLM analysis
1008
- st.session_state.current_image = image
1009
- st.session_state.current_overlay = overlay if 'overlay' in locals() else None
1010
- st.session_state.current_face_box = detected_face_box if 'detected_face_box' in locals() else None
1011
- st.session_state.current_pred_label = pred_label
1012
- st.session_state.current_confidence = confidence
1013
-
1014
- st.success("✅ Initial detection and GradCAM visualization complete!")
1015
- except Exception as e:
1016
- st.error(f"Overall error in Xception processing: {str(e)}")
1017
- import traceback
1018
- st.error(traceback.format_exc())
1019
- else:
1020
- st.warning("⚠️ Please load the Xception model first to perform initial detection.")
1021
-
1022
- # Image Analysis Summary section - AFTER Stage 2
1023
- if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
1024
- with st.expander("Image Analysis Summary", expanded=True):
1025
- # Display images and analysis in organized layout
1026
  col1, col2 = st.columns([1, 2])
1027
-
1028
  with col1:
1029
- # Display original image
1030
  st.image(st.session_state.current_image, caption="Original Image", width=300)
1031
- # Display GradCAM overlay
1032
  if hasattr(st.session_state, 'current_overlay'):
1033
  st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
1034
 
1035
  with col2:
1036
- # Image description
1037
- if hasattr(st.session_state, 'image_caption'):
1038
- st.markdown("### Image Description")
1039
- st.markdown(st.session_state.image_caption)
1040
- st.markdown("---")
1041
-
1042
- # GradCAM analysis
1043
- if hasattr(st.session_state, 'gradcam_caption'):
1044
- st.markdown("### GradCAM Analysis")
1045
- st.markdown(st.session_state.gradcam_caption)
1046
- st.markdown("---")
1047
- else:
1048
- st.warning("GradCAM caption not found in session state.")
1049
-
1050
- # LLM Analysis section - AFTER Image Analysis Summary
1051
- with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
1052
- if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
1053
- st.subheader("Detailed Deepfake Analysis")
1054
 
1055
  # Display chat history
1056
  for i, (question, answer) in enumerate(st.session_state.chat_history):
@@ -1058,6 +1046,17 @@ def main():
1058
  st.markdown(f"**Answer:** {answer}")
1059
  st.markdown("---")
1060
 
 
 
 
 
 
 
 
 
 
 
 
1061
  # Include both captions in the prompt if available
1062
  caption_text = ""
1063
  if hasattr(st.session_state, 'image_caption'):
@@ -1142,11 +1141,11 @@ def main():
1142
 
1143
  except Exception as e:
1144
  st.error(f"Error during LLM analysis: {str(e)}")
1145
-
1146
- elif not hasattr(st.session_state, 'current_image'):
1147
- st.warning("⚠️ Please upload an image and complete the initial detection first.")
1148
  else:
1149
- st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
 
 
 
1150
 
1151
  # Footer
1152
  st.markdown("---")
 
693
  if 'chat_history' not in st.session_state:
694
  st.session_state.chat_history = []
695
 
696
+ # Create multi-tab interface
697
+ tab1, tab2, tab3 = st.tabs(["Deepfake Detection", "Image Captions", "LLM Analysis"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698
 
699
+ # Tab 1: Deepfake Detection with Model Loading and Image Upload
700
+ with tab1:
701
+ st.header("Deepfake Detection")
702
 
703
+ # Model Loading section
704
+ with st.expander("Load Detection Model", expanded=True):
705
+ st.write("Please load the Xception model for deepfake detection:")
 
706
  if not st.session_state.xception_model_loaded:
707
+ if st.button("📥 Load Xception Model", type="primary"):
708
  # Load Xception model
709
  model, device = load_detection_model_xception()
710
  if model is not None:
 
717
  else:
718
  st.success("✅ Xception model loaded and ready!")
719
 
720
+ # Image upload section
721
+ with st.expander("Upload and Analyze Image", expanded=True):
722
+ st.subheader("Upload an Image")
723
+
724
+ # Add alternative upload methods
725
+ upload_tab1, upload_tab2 = st.tabs(["File Upload", "URL Input"])
726
+
727
+ uploaded_image = None
728
+
729
+ with upload_tab1:
730
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
731
+ if uploaded_file is not None:
732
+ try:
733
+ # Simple direct approach - load the image directly
734
+ image = Image.open(uploaded_file).convert("RGB")
735
+ uploaded_image = image
736
+ st.session_state.upload_method = "file"
737
+ except Exception as e:
738
+ st.error(f"Error loading image: {str(e)}")
739
+ import traceback
740
+ st.error(traceback.format_exc())
741
+
742
+ with upload_tab2:
743
+ url = st.text_input("Enter image URL:")
744
+ if url and url.strip():
745
+ try:
746
+ import requests
747
+ # Simplified URL handling with more robust approach
748
+ headers = {
749
+ 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
750
+ 'Accept': 'image/jpeg, image/png, image/*, */*',
751
+ 'Referer': 'https://huggingface.co/'
752
+ }
753
+
754
+ # Try three different methods to handle various API restrictions
755
+ try_methods = True
756
+
757
+ # Method 1: Direct requests
758
+ if try_methods:
759
+ try:
760
+ response = requests.get(url, stream=True, headers=headers, timeout=10)
761
+ if response.status_code == 200 and 'image' in response.headers.get('Content-Type', ''):
762
+ try:
763
+ image = Image.open(io.BytesIO(response.content)).convert("RGB")
764
+ uploaded_image = image
765
+ st.session_state.upload_method = "url_direct"
766
+ try_methods = False
767
+ st.success("✅ Image loaded via direct request")
768
+ except Exception as e:
769
+ st.warning(f"Direct method received data but couldn't process as image: {str(e)}")
770
+ else:
771
+ st.info(f"Direct method failed: Status {response.status_code}, trying alternative method...")
772
+ except Exception as e:
773
+ st.info(f"Direct method error: {str(e)}, trying alternative method...")
774
+
775
+ # Method 2: Use Python's urllib as fallback
776
+ if try_methods:
777
+ try:
778
+ import urllib.request
779
+ from urllib.error import HTTPError
780
+
781
+ opener = urllib.request.build_opener()
782
+ opener.addheaders = [('User-agent', headers['User-Agent'])]
783
+ urllib.request.install_opener(opener)
784
+
785
+ with urllib.request.urlopen(url, timeout=10) as response:
786
+ image_data = response.read()
787
+ image = Image.open(io.BytesIO(image_data)).convert("RGB")
788
+ uploaded_image = image
789
+ st.session_state.upload_method = "url_urllib"
790
+ try_methods = False
791
+ st.success("✅ Image loaded via urllib")
792
+ except HTTPError as e:
793
+ st.info(f"urllib method failed: HTTP error {e.code}, trying next method...")
794
+ except Exception as e:
795
+ st.info(f"urllib method error: {str(e)}, trying next method...")
796
+
797
+ # Method 3: Use a proxy service as last resort
798
+ if try_methods:
799
+ try:
800
+ # This uses an image proxy service to bypass CORS issues
801
+ # Only as last resort since it depends on external service
802
+ proxy_url = f"https://images.weserv.nl/?url={url}"
803
+ response = requests.get(proxy_url, stream=True, timeout=10)
804
+ if response.status_code == 200:
805
+ image = Image.open(io.BytesIO(response.content)).convert("RGB")
806
+ uploaded_image = image
807
+ st.session_state.upload_method = "url_proxy"
808
+ try_methods = False
809
+ st.success("✅ Image loaded via proxy service")
810
+ else:
811
+ st.error(f"All methods failed to load the image from URL. Last status: {response.status_code}")
812
+ except Exception as e:
813
+ st.error(f"All methods failed. Final error: {str(e)}")
814
+
815
+ if not uploaded_image:
816
+ st.error("Failed to load image using all available methods.")
817
+
818
+ except Exception as e:
819
+ st.error(f"Error processing URL: {str(e)}")
820
+ if st.session_state.debug:
821
+ import traceback
822
+ st.error(traceback.format_exc())
823
+
824
+ # If we have an uploaded image, process it
825
+ if uploaded_image is not None:
826
+ # Display the image
827
+ image = uploaded_image
828
+ col1, col2 = st.columns([1, 2])
829
+ with col1:
830
+ st.image(image, caption="Uploaded Image", width=300)
831
+
832
+ # Continue with Xception model analysis
833
+ if st.session_state.xception_model_loaded:
834
+ try:
835
+ with st.spinner("Analyzing image with Xception model..."):
836
+ # Preprocess image for Xception
837
+ input_tensor, original_image, face_box = preprocess_image_xception(image)
838
+
839
+ if input_tensor is None:
840
+ st.error("Failed to preprocess image. Please try another image.")
841
+ st.stop()
842
+
843
+ # Get device and model
844
+ device = st.session_state.device
845
+ model = st.session_state.xception_model
846
+
847
+ # Ensure model is in eval mode
848
+ model.eval()
849
+
850
+ # Move tensor to device
851
+ input_tensor = input_tensor.to(device)
852
+
853
+ # Forward pass with proper error handling
854
+ try:
855
+ with torch.no_grad():
856
+ logits = model(input_tensor)
857
+ probabilities = torch.softmax(logits, dim=1)[0]
858
+ pred_class = torch.argmax(probabilities).item()
859
+ confidence = probabilities[pred_class].item()
860
+
861
+ # Explicit class mapping - adjust if needed based on your model
862
+ pred_label = "Fake" if pred_class == 0 else "Real"
863
+ except Exception as e:
864
+ st.error(f"Error in model inference: {str(e)}")
865
+ import traceback
866
+ st.error(traceback.format_exc())
867
+ # Set default values
868
+ pred_class = 0
869
+ confidence = 0.5
870
+ pred_label = "Error in prediction"
871
+
872
+ # Display results
873
+ with col2:
874
+ st.markdown("### Detection Result")
875
+ st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
876
+
877
+ # Display face box on image if detected
878
+ if face_box:
879
+ img_to_show = original_image.copy()
880
+ img_draw = np.array(img_to_show)
881
+ x, y, w, h = face_box
882
+ cv2.rectangle(img_draw, (x, y), (x + w, y + h), (0, 255, 0), 2)
883
+ st.image(Image.fromarray(img_draw), caption="Detected Face", width=300)
884
+
885
+ # GradCAM visualization with error handling
886
+ st.subheader("GradCAM Visualization")
887
+ try:
888
+ cam, overlay, comparison, detected_face_box = process_image_with_xception_gradcam(
889
+ image, model, device, pred_class
890
+ )
891
+
892
+ if comparison:
893
+ # Display GradCAM results (controlled size)
894
+ st.image(comparison, caption="Original | CAM | Overlay", width=700)
895
+
896
+ # Save for later use
897
+ st.session_state.comparison_image = comparison
898
+ else:
899
+ st.error("GradCAM visualization failed - comparison image not generated")
900
+
901
+ # Generate caption for GradCAM overlay image if BLIP model is loaded
902
+ if st.session_state.blip_model_loaded and overlay:
903
+ with st.spinner("Analyzing GradCAM visualization..."):
904
+ gradcam_caption = generate_gradcam_caption(
905
+ overlay,
906
+ st.session_state.finetuned_processor,
907
+ st.session_state.finetuned_model
908
+ )
909
+ st.session_state.gradcam_caption = gradcam_caption
910
+
911
+ # Display the caption directly here as well for immediate feedback
912
+ st.markdown("### GradCAM Analysis")
913
+ st.markdown(gradcam_caption)
914
+ except Exception as e:
915
+ st.error(f"Error generating GradCAM: {str(e)}")
916
+ import traceback
917
+ st.error(traceback.format_exc())
918
+
919
+ # Save results in session state for use in other tabs
920
+ st.session_state.current_image = image
921
+ st.session_state.current_overlay = overlay if 'overlay' in locals() else None
922
+ st.session_state.current_face_box = detected_face_box if 'detected_face_box' in locals() else None
923
+ st.session_state.current_pred_label = pred_label
924
+ st.session_state.current_confidence = confidence
925
+
926
+ st.success("✅ Initial detection and GradCAM visualization complete!")
927
+ except Exception as e:
928
+ st.error(f"Overall error in Xception processing: {str(e)}")
929
+ import traceback
930
+ st.error(traceback.format_exc())
931
+ else:
932
+ st.warning("⚠️ Please load the Xception model first to perform initial detection.")
933
+
934
+ # Tab 2: Image Captions with BLIP models
935
+ with tab2:
936
+ st.header("Image Captions")
937
+
938
+ # Model Loading section
939
+ with st.expander("Load Captioning Models", expanded=True):
940
  if not st.session_state.blip_model_loaded:
941
  if st.button("📥 Load BLIP for Captioning", type="primary"):
942
  # Load BLIP models
 
952
  st.error("❌ Failed to load BLIP models.")
953
  else:
954
  st.success("✅ BLIP captioning models loaded and ready!")
955
+
956
+ # Image Caption Display
957
+ if hasattr(st.session_state, 'current_image'):
958
+ col1, col2 = st.columns([1, 2])
959
+
960
+ with col1:
961
+ st.image(st.session_state.current_image, caption="Image", width=300)
962
 
963
+ if hasattr(st.session_state, 'current_overlay'):
964
+ st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
965
+
966
+ with col2:
967
+ if not st.session_state.blip_model_loaded:
968
+ st.warning("⚠️ Please load the BLIP models first to see captions.")
969
+ else:
970
+ # Button to generate captions if not already generated
971
+ if not hasattr(st.session_state, 'image_caption') or st.button("Regenerate Image Caption"):
972
+ with st.spinner("Generating image description..."):
973
+ caption = generate_image_caption(
974
+ st.session_state.current_image,
975
+ st.session_state.original_processor,
976
+ st.session_state.original_model
977
+ )
978
+ st.session_state.image_caption = caption
979
+
980
+ # Display original image caption
981
+ if hasattr(st.session_state, 'image_caption'):
982
+ st.markdown("### Image Description")
983
+ st.markdown(st.session_state.image_caption)
984
+ st.markdown("---")
985
+
986
+ # Display GradCAM caption if available
987
+ if hasattr(st.session_state, 'gradcam_caption'):
988
+ st.markdown("### GradCAM Analysis")
989
+ st.markdown(st.session_state.gradcam_caption)
990
+
991
+ # Button to regenerate GradCAM caption
992
+ if hasattr(st.session_state, 'current_overlay') and st.button("Regenerate GradCAM Caption"):
993
+ with st.spinner("Reanalyzing GradCAM visualization..."):
994
+ gradcam_caption = generate_gradcam_caption(
995
+ st.session_state.current_overlay,
996
+ st.session_state.finetuned_processor,
997
+ st.session_state.finetuned_model
998
+ )
999
+ st.session_state.gradcam_caption = gradcam_caption
1000
+ st.rerun()
1001
+ else:
1002
+ st.info("GradCAM caption not available. Visit the Detection tab to generate it.")
1003
+ else:
1004
+ st.info("Please upload and analyze an image in the Detection tab first.")
1005
+
1006
+ # Tab 3: LLM Analysis
1007
+ with tab3:
1008
+ st.header("LLM Analysis")
1009
+
1010
+ # Model Loading section
1011
+ with st.expander("Load LLM Model", expanded=True):
1012
  if not st.session_state.llm_model_loaded:
1013
+ if st.button("📥 Load Vision LLM", type="primary"):
1014
  # Load LLM model
1015
  model, tokenizer = load_llm_model()
1016
  if model is not None and tokenizer is not None:
 
1022
  st.error("❌ Failed to load Vision LLM.")
1023
  else:
1024
  st.success("✅ Vision LLM loaded and ready!")
 
 
 
 
 
 
 
 
 
1025
 
1026
+ # Chat Interface
1027
+ if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
1028
+ st.subheader("Deepfake Analysis Chat")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
 
1030
+ # Display images
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031
  col1, col2 = st.columns([1, 2])
 
1032
  with col1:
 
1033
  st.image(st.session_state.current_image, caption="Original Image", width=300)
 
1034
  if hasattr(st.session_state, 'current_overlay'):
1035
  st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
1036
 
1037
  with col2:
1038
+ # Display detection result if available
1039
+ if hasattr(st.session_state, 'current_pred_label'):
1040
+ st.markdown("### Detection Result")
1041
+ st.markdown(f"**Classification:** {st.session_state.current_pred_label} (Confidence: {st.session_state.current_confidence:.2%})")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042
 
1043
  # Display chat history
1044
  for i, (question, answer) in enumerate(st.session_state.chat_history):
 
1046
  st.markdown(f"**Answer:** {answer}")
1047
  st.markdown("---")
1048
 
1049
+ # Custom instruction
1050
+ use_custom_instructions = st.toggle("Enable Custom Instructions", value=False, help="Toggle to enable/disable custom instructions")
1051
+ if use_custom_instructions:
1052
+ custom_instruction = st.text_area(
1053
+ "Custom Instructions (Advanced)",
1054
+ value="Specify your preferred style of explanation (e.g., 'Provide technical, detailed explanations' or 'Use simple, non-technical language'). You can also specify what aspects of the image to focus on.",
1055
+ help="Add specific instructions for the analysis"
1056
+ )
1057
+ else:
1058
+ custom_instruction = ""
1059
+
1060
  # Include both captions in the prompt if available
1061
  caption_text = ""
1062
  if hasattr(st.session_state, 'image_caption'):
 
1141
 
1142
  except Exception as e:
1143
  st.error(f"Error during LLM analysis: {str(e)}")
 
 
 
1144
  else:
1145
+ if not hasattr(st.session_state, 'current_image'):
1146
+ st.warning("⚠️ Please upload an image in the Detection tab first.")
1147
+ else:
1148
+ st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
1149
 
1150
  # Footer
1151
  st.markdown("---")