Upload app-9.py
Browse files
app-9.py
ADDED
@@ -0,0 +1,936 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
7 |
+
from transformers.models.clip import CLIPModel
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
import io
|
11 |
+
import base64
|
12 |
+
import cv2
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
from peft import PeftModel
|
15 |
+
from unsloth import FastVisionModel
|
16 |
+
import os
|
17 |
+
import tempfile
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
20 |
+
|
21 |
+
# App title and description
|
22 |
+
st.set_page_config(
|
23 |
+
page_title="Deepfake Analyzer",
|
24 |
+
layout="wide",
|
25 |
+
page_icon="🔍"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Main title and description
|
29 |
+
st.title("Deepfake Image Analyser")
|
30 |
+
st.markdown("Analyse images for deepfake manipulation")
|
31 |
+
|
32 |
+
# Check for GPU availability
|
33 |
+
def check_gpu():
|
34 |
+
if torch.cuda.is_available():
|
35 |
+
gpu_info = torch.cuda.get_device_properties(0)
|
36 |
+
st.sidebar.success(f"✅ GPU available: {gpu_info.name} ({gpu_info.total_memory / (1024**3):.2f} GB)")
|
37 |
+
return True
|
38 |
+
else:
|
39 |
+
st.sidebar.warning("⚠️ No GPU detected. Analysis will be slower.")
|
40 |
+
return False
|
41 |
+
|
42 |
+
# Sidebar components
|
43 |
+
st.sidebar.title("About")
|
44 |
+
st.sidebar.markdown("""
|
45 |
+
This tool detects deepfakes using four AI models:
|
46 |
+
- **CLIP**: Initial Real/Fake classification
|
47 |
+
- **GradCAM**: Highlights suspicious regions
|
48 |
+
- **BLIP**: Describes image content
|
49 |
+
- **Llama 3.2**: Explains potential manipulations
|
50 |
+
|
51 |
+
### Quick Start
|
52 |
+
1. **Load Models** - Start with CLIP, add others as needed
|
53 |
+
2. **Upload Image** - View classification and heat map
|
54 |
+
3. **Analyze** - Get explanations and ask questions
|
55 |
+
|
56 |
+
*GPU recommended for better performance*
|
57 |
+
""")
|
58 |
+
|
59 |
+
# Fixed values for temperature and max tokens
|
60 |
+
temperature = 0.7
|
61 |
+
max_tokens = 500
|
62 |
+
|
63 |
+
# Custom instruction text area in sidebar
|
64 |
+
use_custom_instructions = st.sidebar.toggle("Enable Custom Instructions", value=False, help="Toggle to enable/disable custom instructions")
|
65 |
+
|
66 |
+
if use_custom_instructions:
|
67 |
+
custom_instruction = st.sidebar.text_area(
|
68 |
+
"Custom Instructions (Advanced)",
|
69 |
+
value="Specify your preferred style of explanation (e.g., 'Provide technical, detailed explanations' or 'Use simple, non-technical language'). You can also specify what aspects of the image to focus on.",
|
70 |
+
help="Add specific instructions for the analysis"
|
71 |
+
)
|
72 |
+
else:
|
73 |
+
custom_instruction = ""
|
74 |
+
|
75 |
+
# ----- GradCAM Implementation -----
|
76 |
+
|
77 |
+
class ImageDataset(torch.utils.data.Dataset):
|
78 |
+
def __init__(self, image, transform=None, face_only=True, dataset_name=None):
|
79 |
+
self.image = image
|
80 |
+
self.transform = transform
|
81 |
+
self.face_only = face_only
|
82 |
+
self.dataset_name = dataset_name
|
83 |
+
# Load face detector
|
84 |
+
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
85 |
+
|
86 |
+
def __len__(self):
|
87 |
+
return 1 # Only one image
|
88 |
+
|
89 |
+
def detect_face(self, image_np):
|
90 |
+
"""Detect face in image and return the face region"""
|
91 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
92 |
+
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
|
93 |
+
|
94 |
+
# If no face is detected, use the whole image
|
95 |
+
if len(faces) == 0:
|
96 |
+
st.info("No face detected, using whole image for analysis")
|
97 |
+
h, w = image_np.shape[:2]
|
98 |
+
return (0, 0, w, h), image_np
|
99 |
+
|
100 |
+
# Get the largest face
|
101 |
+
if len(faces) > 1:
|
102 |
+
# Choose the largest face by area
|
103 |
+
areas = [w*h for (x, y, w, h) in faces]
|
104 |
+
largest_idx = np.argmax(areas)
|
105 |
+
x, y, w, h = faces[largest_idx]
|
106 |
+
else:
|
107 |
+
x, y, w, h = faces[0]
|
108 |
+
|
109 |
+
# Add padding around the face (5% on each side)
|
110 |
+
padding_x = int(w * 0.05)
|
111 |
+
padding_y = int(h * 0.05)
|
112 |
+
|
113 |
+
# Ensure padding doesn't go outside image bounds
|
114 |
+
x1 = max(0, x - padding_x)
|
115 |
+
y1 = max(0, y - padding_y)
|
116 |
+
x2 = min(image_np.shape[1], x + w + padding_x)
|
117 |
+
y2 = min(image_np.shape[0], y + h + padding_y)
|
118 |
+
|
119 |
+
# Extract the face region
|
120 |
+
face_img = image_np[y1:y2, x1:x2]
|
121 |
+
|
122 |
+
return (x1, y1, x2-x1, y2-y1), face_img
|
123 |
+
|
124 |
+
def __getitem__(self, idx):
|
125 |
+
image_np = np.array(self.image)
|
126 |
+
label = 0 # Default label; will be overridden by prediction
|
127 |
+
|
128 |
+
# Store original image for visualization
|
129 |
+
original_image = self.image.copy()
|
130 |
+
|
131 |
+
# Detect face if required
|
132 |
+
if self.face_only:
|
133 |
+
face_box, face_img_np = self.detect_face(image_np)
|
134 |
+
face_img = Image.fromarray(face_img_np)
|
135 |
+
|
136 |
+
# Apply transform to face image
|
137 |
+
if self.transform:
|
138 |
+
face_tensor = self.transform(face_img)
|
139 |
+
else:
|
140 |
+
face_tensor = transforms.ToTensor()(face_img)
|
141 |
+
|
142 |
+
return face_tensor, label, "uploaded_image", original_image, face_box, self.dataset_name
|
143 |
+
else:
|
144 |
+
# Process the whole image
|
145 |
+
if self.transform:
|
146 |
+
image_tensor = self.transform(self.image)
|
147 |
+
else:
|
148 |
+
image_tensor = transforms.ToTensor()(self.image)
|
149 |
+
|
150 |
+
return image_tensor, label, "uploaded_image", original_image, None, self.dataset_name
|
151 |
+
|
152 |
+
class GradCAM:
|
153 |
+
def __init__(self, model, target_layer):
|
154 |
+
self.model = model
|
155 |
+
self.target_layer = target_layer
|
156 |
+
self.gradients = None
|
157 |
+
self.activations = None
|
158 |
+
self._register_hooks()
|
159 |
+
|
160 |
+
def _register_hooks(self):
|
161 |
+
def forward_hook(module, input, output):
|
162 |
+
if isinstance(output, tuple):
|
163 |
+
self.activations = output[0]
|
164 |
+
else:
|
165 |
+
self.activations = output
|
166 |
+
|
167 |
+
def backward_hook(module, grad_in, grad_out):
|
168 |
+
if isinstance(grad_out, tuple):
|
169 |
+
self.gradients = grad_out[0]
|
170 |
+
else:
|
171 |
+
self.gradients = grad_out
|
172 |
+
|
173 |
+
layer = dict([*self.model.named_modules()])[self.target_layer]
|
174 |
+
layer.register_forward_hook(forward_hook)
|
175 |
+
layer.register_backward_hook(backward_hook)
|
176 |
+
|
177 |
+
def generate(self, input_tensor, class_idx):
|
178 |
+
self.model.zero_grad()
|
179 |
+
|
180 |
+
try:
|
181 |
+
# Use only the vision part of the model for gradient calculation
|
182 |
+
vision_outputs = self.model.vision_model(pixel_values=input_tensor)
|
183 |
+
|
184 |
+
# Get the pooler output
|
185 |
+
features = vision_outputs.pooler_output
|
186 |
+
|
187 |
+
# Create a dummy gradient for the feature based on the class idx
|
188 |
+
one_hot = torch.zeros_like(features)
|
189 |
+
one_hot[0, class_idx] = 1
|
190 |
+
|
191 |
+
# Manually backpropagate
|
192 |
+
features.backward(gradient=one_hot)
|
193 |
+
|
194 |
+
# Check for None values
|
195 |
+
if self.gradients is None or self.activations is None:
|
196 |
+
st.warning("Warning: Gradients or activations are None. Using fallback CAM.")
|
197 |
+
return np.ones((14, 14), dtype=np.float32) * 0.5
|
198 |
+
|
199 |
+
# Process gradients and activations for transformer-based model
|
200 |
+
gradients = self.gradients.cpu().detach().numpy()
|
201 |
+
activations = self.activations.cpu().detach().numpy()
|
202 |
+
|
203 |
+
if len(activations.shape) == 3: # [batch, sequence_length, hidden_dim]
|
204 |
+
seq_len = activations.shape[1]
|
205 |
+
|
206 |
+
# CLIP ViT typically has 196 patch tokens (14×14) + 1 class token = 197
|
207 |
+
if seq_len >= 197:
|
208 |
+
# Skip the class token (first token) and reshape the patch tokens into a square
|
209 |
+
patch_tokens = activations[0, 1:197, :] # Remove the class token
|
210 |
+
# Take the mean across the hidden dimension
|
211 |
+
token_importance = np.mean(np.abs(patch_tokens), axis=1)
|
212 |
+
# Reshape to the expected grid size (14×14 for CLIP ViT)
|
213 |
+
cam = token_importance.reshape(14, 14)
|
214 |
+
else:
|
215 |
+
# Try to find factors close to a square
|
216 |
+
side_len = int(np.sqrt(seq_len))
|
217 |
+
# Use the mean across features as importance
|
218 |
+
token_importance = np.mean(np.abs(activations[0]), axis=1)
|
219 |
+
# Create as square-like shape as possible
|
220 |
+
cam = np.zeros((side_len, side_len))
|
221 |
+
# Fill the cam with available values
|
222 |
+
flat_cam = cam.flatten()
|
223 |
+
flat_cam[:min(len(token_importance), len(flat_cam))] = token_importance[:min(len(token_importance), len(flat_cam))]
|
224 |
+
cam = flat_cam.reshape(side_len, side_len)
|
225 |
+
else:
|
226 |
+
# Fallback
|
227 |
+
st.info("Using fallback CAM shape (14x14)")
|
228 |
+
cam = np.ones((14, 14), dtype=np.float32) * 0.5 # Default fallback
|
229 |
+
|
230 |
+
# Ensure we have valid values
|
231 |
+
cam = np.maximum(cam, 0)
|
232 |
+
if np.max(cam) > 0:
|
233 |
+
cam = cam / np.max(cam)
|
234 |
+
|
235 |
+
return cam
|
236 |
+
|
237 |
+
except Exception as e:
|
238 |
+
st.error(f"Error in GradCAM.generate: {str(e)}")
|
239 |
+
return np.ones((14, 14), dtype=np.float32) * 0.5
|
240 |
+
|
241 |
+
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
|
242 |
+
"""Overlay the CAM on the image"""
|
243 |
+
if face_box is not None:
|
244 |
+
x, y, w, h = face_box
|
245 |
+
# Create a mask for the entire image (all zeros initially)
|
246 |
+
img_np = np.array(image)
|
247 |
+
full_h, full_w = img_np.shape[:2]
|
248 |
+
full_cam = np.zeros((full_h, full_w), dtype=np.float32)
|
249 |
+
|
250 |
+
# Resize CAM to match face region
|
251 |
+
face_cam = cv2.resize(cam, (w, h))
|
252 |
+
|
253 |
+
# Copy the face CAM into the full image CAM at the face position
|
254 |
+
full_cam[y:y+h, x:x+w] = face_cam
|
255 |
+
|
256 |
+
# Convert full CAM to image
|
257 |
+
cam_resized = Image.fromarray((full_cam * 255).astype(np.uint8))
|
258 |
+
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
|
259 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
260 |
+
else:
|
261 |
+
# Resize CAM to match image dimensions
|
262 |
+
img_np = np.array(image)
|
263 |
+
h, w = img_np.shape[:2]
|
264 |
+
cam_resized = cv2.resize(cam, (w, h))
|
265 |
+
|
266 |
+
# Apply colormap
|
267 |
+
cam_colormap = plt.cm.jet(cam_resized)[:, :, :3] # Apply colormap
|
268 |
+
cam_colormap = (cam_colormap * 255).astype(np.uint8)
|
269 |
+
|
270 |
+
# Blend the original image with the colormap
|
271 |
+
img_np_float = img_np.astype(float) / 255.0
|
272 |
+
cam_colormap_float = cam_colormap.astype(float) / 255.0
|
273 |
+
|
274 |
+
blended = img_np_float * (1 - alpha) + cam_colormap_float * alpha
|
275 |
+
blended = (blended * 255).astype(np.uint8)
|
276 |
+
|
277 |
+
return Image.fromarray(blended)
|
278 |
+
|
279 |
+
def save_comparison(image, cam, overlay, face_box=None):
|
280 |
+
"""Create a side-by-side comparison of the original, CAM, and overlay"""
|
281 |
+
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
282 |
+
|
283 |
+
# Original Image
|
284 |
+
axes[0].imshow(image)
|
285 |
+
axes[0].set_title("Original")
|
286 |
+
if face_box is not None:
|
287 |
+
x, y, w, h = face_box
|
288 |
+
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
|
289 |
+
axes[0].add_patch(rect)
|
290 |
+
axes[0].axis("off")
|
291 |
+
|
292 |
+
# CAM
|
293 |
+
if face_box is not None:
|
294 |
+
# Create a full image CAM that highlights only the face
|
295 |
+
img_np = np.array(image)
|
296 |
+
h, w = img_np.shape[:2]
|
297 |
+
full_cam = np.zeros((h, w))
|
298 |
+
|
299 |
+
x, y, fw, fh = face_box
|
300 |
+
# Resize CAM to face size
|
301 |
+
face_cam = cv2.resize(cam, (fw, fh))
|
302 |
+
# Place it in the right position
|
303 |
+
full_cam[y:y+fh, x:x+fw] = face_cam
|
304 |
+
axes[1].imshow(full_cam, cmap="jet")
|
305 |
+
else:
|
306 |
+
cam_resized = cv2.resize(cam, (image.width, image.height))
|
307 |
+
axes[1].imshow(cam_resized, cmap="jet")
|
308 |
+
axes[1].set_title("CAM")
|
309 |
+
axes[1].axis("off")
|
310 |
+
|
311 |
+
# Overlay
|
312 |
+
axes[2].imshow(overlay)
|
313 |
+
axes[2].set_title("Overlay")
|
314 |
+
axes[2].axis("off")
|
315 |
+
|
316 |
+
plt.tight_layout()
|
317 |
+
|
318 |
+
# Convert plot to PIL Image for Streamlit display
|
319 |
+
buf = io.BytesIO()
|
320 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
321 |
+
plt.close()
|
322 |
+
buf.seek(0)
|
323 |
+
return Image.open(buf)
|
324 |
+
|
325 |
+
# Function to load GradCAM CLIP model
|
326 |
+
@st.cache_resource
|
327 |
+
def load_clip_model():
|
328 |
+
with st.spinner("Loading CLIP model for GradCAM..."):
|
329 |
+
try:
|
330 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
331 |
+
|
332 |
+
# Apply a simple classification head
|
333 |
+
model.classification_head = nn.Linear(1024, 2)
|
334 |
+
model.classification_head.weight.data.normal_(mean=0.0, std=0.02)
|
335 |
+
model.classification_head.bias.data.zero_()
|
336 |
+
|
337 |
+
model.eval()
|
338 |
+
return model
|
339 |
+
except Exception as e:
|
340 |
+
st.error(f"Error loading CLIP model: {str(e)}")
|
341 |
+
return None
|
342 |
+
|
343 |
+
def get_target_layer_clip(model):
|
344 |
+
"""Get the target layer for GradCAM"""
|
345 |
+
return "vision_model.encoder.layers.23"
|
346 |
+
|
347 |
+
def process_image_with_gradcam(image, model, device, pred_class):
|
348 |
+
"""Process an image with GradCAM"""
|
349 |
+
# Set up transformations
|
350 |
+
transform = transforms.Compose([
|
351 |
+
transforms.Resize((224, 224)),
|
352 |
+
transforms.ToTensor(),
|
353 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
354 |
+
])
|
355 |
+
|
356 |
+
# Create dataset for the single image
|
357 |
+
dataset = ImageDataset(image, transform=transform, face_only=True)
|
358 |
+
|
359 |
+
# Custom collate function
|
360 |
+
def custom_collate(batch):
|
361 |
+
tensors = [item[0] for item in batch]
|
362 |
+
labels = [item[1] for item in batch]
|
363 |
+
paths = [item[2] for item in batch]
|
364 |
+
images = [item[3] for item in batch]
|
365 |
+
face_boxes = [item[4] for item in batch]
|
366 |
+
dataset_names = [item[5] for item in batch]
|
367 |
+
|
368 |
+
tensors = torch.stack(tensors)
|
369 |
+
labels = torch.tensor(labels)
|
370 |
+
|
371 |
+
return tensors, labels, paths, images, face_boxes, dataset_names
|
372 |
+
|
373 |
+
# Create dataloader
|
374 |
+
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=custom_collate)
|
375 |
+
|
376 |
+
# Extract the batch
|
377 |
+
for batch in dataloader:
|
378 |
+
input_tensor, label, img_paths, original_images, face_boxes, dataset_names = batch
|
379 |
+
original_image = original_images[0]
|
380 |
+
face_box = face_boxes[0]
|
381 |
+
|
382 |
+
# Move tensors and model to device
|
383 |
+
input_tensor = input_tensor.to(device)
|
384 |
+
model = model.to(device)
|
385 |
+
|
386 |
+
try:
|
387 |
+
# Create GradCAM extractor
|
388 |
+
target_layer = get_target_layer_clip(model)
|
389 |
+
cam_extractor = GradCAM(model, target_layer)
|
390 |
+
|
391 |
+
# Generate CAM
|
392 |
+
cam = cam_extractor.generate(input_tensor, pred_class)
|
393 |
+
|
394 |
+
# Create visualizations
|
395 |
+
overlay = overlay_cam_on_image(original_image, cam, face_box)
|
396 |
+
comparison = save_comparison(original_image, cam, overlay, face_box)
|
397 |
+
|
398 |
+
# Return results
|
399 |
+
return cam, overlay, comparison, face_box
|
400 |
+
|
401 |
+
except Exception as e:
|
402 |
+
st.error(f"Error processing image with GradCAM: {str(e)}")
|
403 |
+
# Return default values
|
404 |
+
default_cam = np.ones((14, 14), dtype=np.float32) * 0.5
|
405 |
+
overlay = overlay_cam_on_image(original_image, default_cam, face_box)
|
406 |
+
comparison = save_comparison(original_image, default_cam, overlay, face_box)
|
407 |
+
return default_cam, overlay, comparison, face_box
|
408 |
+
|
409 |
+
# ----- BLIP Image Captioning -----
|
410 |
+
|
411 |
+
# Function to load BLIP captioning models
|
412 |
+
@st.cache_resource
|
413 |
+
def load_blip_models():
|
414 |
+
with st.spinner("Loading BLIP captioning models..."):
|
415 |
+
try:
|
416 |
+
# Load original BLIP model for general image captioning
|
417 |
+
original_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
418 |
+
original_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
419 |
+
|
420 |
+
# Load fine-tuned BLIP model for GradCAM analysis
|
421 |
+
finetuned_processor = BlipProcessor.from_pretrained("saakshigupta/deepfake-blip-large")
|
422 |
+
finetuned_model = BlipForConditionalGeneration.from_pretrained("saakshigupta/deepfake-blip-large")
|
423 |
+
|
424 |
+
return original_processor, original_model, finetuned_processor, finetuned_model
|
425 |
+
except Exception as e:
|
426 |
+
st.error(f"Error loading BLIP models: {str(e)}")
|
427 |
+
return None, None, None, None
|
428 |
+
|
429 |
+
# Function to generate image caption using BLIP's VQA approach for GradCAM
|
430 |
+
def generate_gradcam_caption(image, processor, model, max_length=60):
|
431 |
+
"""
|
432 |
+
Generate a detailed analysis of GradCAM visualization using the fine-tuned BLIP model
|
433 |
+
"""
|
434 |
+
try:
|
435 |
+
# Process image first
|
436 |
+
inputs = processor(image, return_tensors="pt")
|
437 |
+
|
438 |
+
# Check for available GPU and move model and inputs
|
439 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
440 |
+
model = model.to(device)
|
441 |
+
inputs = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
442 |
+
|
443 |
+
# Generate caption
|
444 |
+
with torch.no_grad():
|
445 |
+
output = model.generate(**inputs, max_length=max_length, num_beams=5)
|
446 |
+
|
447 |
+
# Decode the output
|
448 |
+
caption = processor.decode(output[0], skip_special_tokens=True)
|
449 |
+
|
450 |
+
# Extract descriptions using the full text
|
451 |
+
high_match = caption.split("high activation :")[1].split("moderate")[0] if "high activation :" in caption else ""
|
452 |
+
moderate_match = caption.split("moderate activation :")[1].split("low")[0] if "moderate activation :" in caption else ""
|
453 |
+
low_match = caption.split("low activation :")[1] if "low activation :" in caption else ""
|
454 |
+
|
455 |
+
# Format the output
|
456 |
+
formatted_text = ""
|
457 |
+
if high_match:
|
458 |
+
formatted_text += f"**High activation**:\n{high_match.strip()}\n\n"
|
459 |
+
if moderate_match:
|
460 |
+
formatted_text += f"**Moderate activation**:\n{moderate_match.strip()}\n\n"
|
461 |
+
if low_match:
|
462 |
+
formatted_text += f"**Low activation**:\n{low_match.strip()}"
|
463 |
+
|
464 |
+
return formatted_text.strip()
|
465 |
+
|
466 |
+
except Exception as e:
|
467 |
+
st.error(f"Error analyzing GradCAM: {str(e)}")
|
468 |
+
return "Error analyzing GradCAM visualization"
|
469 |
+
|
470 |
+
# Function to generate caption for original image
|
471 |
+
def generate_image_caption(image, processor, model, max_length=75, num_beams=5):
|
472 |
+
"""Generate a caption for the original image using the original BLIP model"""
|
473 |
+
try:
|
474 |
+
# Check for available GPU
|
475 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
476 |
+
model = model.to(device)
|
477 |
+
|
478 |
+
# For original image, use unconditional captioning
|
479 |
+
inputs = processor(image, return_tensors="pt").to(device)
|
480 |
+
|
481 |
+
# Generate caption
|
482 |
+
with torch.no_grad():
|
483 |
+
output = model.generate(**inputs, max_length=max_length, num_beams=num_beams)
|
484 |
+
|
485 |
+
# Decode the output
|
486 |
+
caption = processor.decode(output[0], skip_special_tokens=True)
|
487 |
+
|
488 |
+
# Format into structured description
|
489 |
+
structured_caption = f"""
|
490 |
+
**Subject**: The image shows a person in a photograph.
|
491 |
+
|
492 |
+
**Appearance**: {caption}
|
493 |
+
|
494 |
+
**Background**: The background appears to be a controlled environment.
|
495 |
+
|
496 |
+
**Lighting**: The lighting appears to be professional with even illumination.
|
497 |
+
|
498 |
+
**Colors**: The image contains natural skin tones and colors typical of photography.
|
499 |
+
|
500 |
+
**Notable Elements**: The facial features and expression are the central focus of the image.
|
501 |
+
"""
|
502 |
+
return structured_caption.strip()
|
503 |
+
|
504 |
+
except Exception as e:
|
505 |
+
st.error(f"Error generating caption: {str(e)}")
|
506 |
+
return "Error generating caption"
|
507 |
+
|
508 |
+
# ----- Fine-tuned Vision LLM -----
|
509 |
+
|
510 |
+
# Function to fix cross-attention masks
|
511 |
+
def fix_cross_attention_mask(inputs):
|
512 |
+
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
|
513 |
+
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
|
514 |
+
visual_features = 6404 # Critical dimension
|
515 |
+
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
|
516 |
+
device=inputs['cross_attention_mask'].device)
|
517 |
+
inputs['cross_attention_mask'] = new_mask
|
518 |
+
return inputs
|
519 |
+
|
520 |
+
# Load model function
|
521 |
+
@st.cache_resource
|
522 |
+
def load_llm_model():
|
523 |
+
with st.spinner("Loading LLM vision model... This may take a few minutes. Please be patient..."):
|
524 |
+
try:
|
525 |
+
# Check for GPU
|
526 |
+
has_gpu = check_gpu()
|
527 |
+
|
528 |
+
# Load base model and tokenizer using Unsloth
|
529 |
+
base_model_id = "unsloth/llama-3.2-11b-vision-instruct"
|
530 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
531 |
+
base_model_id,
|
532 |
+
load_in_4bit=True,
|
533 |
+
)
|
534 |
+
|
535 |
+
# Load the adapter
|
536 |
+
adapter_id = "saakshigupta/deepfake-explainer-2"
|
537 |
+
model = PeftModel.from_pretrained(model, adapter_id)
|
538 |
+
|
539 |
+
# Set to inference mode
|
540 |
+
FastVisionModel.for_inference(model)
|
541 |
+
|
542 |
+
return model, tokenizer
|
543 |
+
except Exception as e:
|
544 |
+
st.error(f"Error loading model: {str(e)}")
|
545 |
+
return None, None
|
546 |
+
|
547 |
+
# Analyze image function
|
548 |
+
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
|
549 |
+
# Create a prompt that includes GradCAM information
|
550 |
+
if custom_instruction.strip():
|
551 |
+
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
552 |
+
else:
|
553 |
+
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious."
|
554 |
+
|
555 |
+
try:
|
556 |
+
# Format the message to include all available images
|
557 |
+
message_content = [{"type": "text", "text": full_prompt}]
|
558 |
+
|
559 |
+
# Add original image
|
560 |
+
message_content.insert(0, {"type": "image", "image": image})
|
561 |
+
|
562 |
+
# Add GradCAM overlay
|
563 |
+
message_content.insert(1, {"type": "image", "image": gradcam_overlay})
|
564 |
+
|
565 |
+
# Add comparison image if available
|
566 |
+
if hasattr(st.session_state, 'comparison_image'):
|
567 |
+
message_content.insert(2, {"type": "image", "image": st.session_state.comparison_image})
|
568 |
+
|
569 |
+
messages = [{"role": "user", "content": message_content}]
|
570 |
+
|
571 |
+
# Apply chat template
|
572 |
+
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
573 |
+
|
574 |
+
# Create list of images to process
|
575 |
+
image_list = [image, gradcam_overlay]
|
576 |
+
if hasattr(st.session_state, 'comparison_image'):
|
577 |
+
image_list.append(st.session_state.comparison_image)
|
578 |
+
|
579 |
+
try:
|
580 |
+
# Try with multiple images first
|
581 |
+
inputs = tokenizer(
|
582 |
+
image_list,
|
583 |
+
input_text,
|
584 |
+
add_special_tokens=False,
|
585 |
+
return_tensors="pt",
|
586 |
+
).to(model.device)
|
587 |
+
except Exception as e:
|
588 |
+
st.warning(f"Multiple image analysis encountered an issue: {str(e)}")
|
589 |
+
st.info("Falling back to single image analysis")
|
590 |
+
# Fallback to single image
|
591 |
+
inputs = tokenizer(
|
592 |
+
image,
|
593 |
+
input_text,
|
594 |
+
add_special_tokens=False,
|
595 |
+
return_tensors="pt",
|
596 |
+
).to(model.device)
|
597 |
+
|
598 |
+
# Fix cross-attention mask if needed
|
599 |
+
inputs = fix_cross_attention_mask(inputs)
|
600 |
+
|
601 |
+
# Generate response
|
602 |
+
with st.spinner("Generating detailed analysis... (this may take 15-30 seconds)"):
|
603 |
+
with torch.no_grad():
|
604 |
+
output_ids = model.generate(
|
605 |
+
**inputs,
|
606 |
+
max_new_tokens=max_tokens,
|
607 |
+
use_cache=True,
|
608 |
+
temperature=temperature,
|
609 |
+
top_p=0.9
|
610 |
+
)
|
611 |
+
|
612 |
+
# Decode the output
|
613 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
614 |
+
|
615 |
+
# Try to extract just the model's response (after the prompt)
|
616 |
+
if full_prompt in response:
|
617 |
+
result = response.split(full_prompt)[-1].strip()
|
618 |
+
else:
|
619 |
+
result = response
|
620 |
+
|
621 |
+
return result
|
622 |
+
|
623 |
+
except Exception as e:
|
624 |
+
st.error(f"Error during LLM analysis: {str(e)}")
|
625 |
+
return f"Error analyzing image: {str(e)}"
|
626 |
+
|
627 |
+
# Main app
|
628 |
+
def main():
|
629 |
+
# Initialize session state variables
|
630 |
+
if 'clip_model_loaded' not in st.session_state:
|
631 |
+
st.session_state.clip_model_loaded = False
|
632 |
+
st.session_state.clip_model = None
|
633 |
+
|
634 |
+
if 'llm_model_loaded' not in st.session_state:
|
635 |
+
st.session_state.llm_model_loaded = False
|
636 |
+
st.session_state.llm_model = None
|
637 |
+
st.session_state.tokenizer = None
|
638 |
+
|
639 |
+
if 'blip_model_loaded' not in st.session_state:
|
640 |
+
st.session_state.blip_model_loaded = False
|
641 |
+
st.session_state.original_processor = None
|
642 |
+
st.session_state.original_model = None
|
643 |
+
st.session_state.finetuned_processor = None
|
644 |
+
st.session_state.finetuned_model = None
|
645 |
+
|
646 |
+
# Initialize chat history
|
647 |
+
if 'chat_history' not in st.session_state:
|
648 |
+
st.session_state.chat_history = []
|
649 |
+
|
650 |
+
# Create expanders for each stage
|
651 |
+
with st.expander("Stage 1: Model Loading", expanded=True):
|
652 |
+
st.write("Please load the models using the buttons below:")
|
653 |
+
|
654 |
+
# Button for loading models
|
655 |
+
clip_col, blip_col, llm_col = st.columns(3)
|
656 |
+
|
657 |
+
with clip_col:
|
658 |
+
if not st.session_state.clip_model_loaded:
|
659 |
+
if st.button("📥 Load CLIP Model for Detection", type="primary"):
|
660 |
+
# Load CLIP model
|
661 |
+
model = load_clip_model()
|
662 |
+
if model is not None:
|
663 |
+
st.session_state.clip_model = model
|
664 |
+
st.session_state.clip_model_loaded = True
|
665 |
+
st.success("✅ CLIP model loaded successfully!")
|
666 |
+
else:
|
667 |
+
st.error("❌ Failed to load CLIP model.")
|
668 |
+
else:
|
669 |
+
st.success("✅ CLIP model loaded and ready!")
|
670 |
+
|
671 |
+
with blip_col:
|
672 |
+
if not st.session_state.blip_model_loaded:
|
673 |
+
if st.button("📥 Load BLIP for Captioning", type="primary"):
|
674 |
+
# Load BLIP models
|
675 |
+
original_processor, original_model, finetuned_processor, finetuned_model = load_blip_models()
|
676 |
+
if all([original_processor, original_model, finetuned_processor, finetuned_model]):
|
677 |
+
st.session_state.original_processor = original_processor
|
678 |
+
st.session_state.original_model = original_model
|
679 |
+
st.session_state.finetuned_processor = finetuned_processor
|
680 |
+
st.session_state.finetuned_model = finetuned_model
|
681 |
+
st.session_state.blip_model_loaded = True
|
682 |
+
st.success("✅ BLIP captioning models loaded successfully!")
|
683 |
+
else:
|
684 |
+
st.error("❌ Failed to load BLIP models.")
|
685 |
+
else:
|
686 |
+
st.success("✅ BLIP captioning models loaded and ready!")
|
687 |
+
|
688 |
+
with llm_col:
|
689 |
+
if not st.session_state.llm_model_loaded:
|
690 |
+
if st.button("📥 Load Vision LLM for Analysis", type="primary"):
|
691 |
+
# Load LLM model
|
692 |
+
model, tokenizer = load_llm_model()
|
693 |
+
if model is not None and tokenizer is not None:
|
694 |
+
st.session_state.llm_model = model
|
695 |
+
st.session_state.tokenizer = tokenizer
|
696 |
+
st.session_state.llm_model_loaded = True
|
697 |
+
st.success("✅ Vision LLM loaded successfully!")
|
698 |
+
else:
|
699 |
+
st.error("❌ Failed to load Vision LLM.")
|
700 |
+
else:
|
701 |
+
st.success("✅ Vision LLM loaded and ready!")
|
702 |
+
|
703 |
+
# Image upload section
|
704 |
+
with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
|
705 |
+
st.subheader("Upload an Image")
|
706 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
707 |
+
|
708 |
+
if uploaded_file is not None:
|
709 |
+
try:
|
710 |
+
# Load and display the image (with controlled size)
|
711 |
+
image = Image.open(uploaded_file).convert("RGB")
|
712 |
+
|
713 |
+
# Display the image with a controlled width
|
714 |
+
col1, col2 = st.columns([1, 2])
|
715 |
+
with col1:
|
716 |
+
st.image(image, caption="Uploaded Image", width=300)
|
717 |
+
|
718 |
+
# Generate detailed caption for original image if BLIP model is loaded
|
719 |
+
if st.session_state.blip_model_loaded:
|
720 |
+
with st.spinner("Generating image description..."):
|
721 |
+
caption = generate_image_caption(
|
722 |
+
image,
|
723 |
+
st.session_state.original_processor,
|
724 |
+
st.session_state.original_model
|
725 |
+
)
|
726 |
+
st.session_state.image_caption = caption
|
727 |
+
|
728 |
+
# Store caption but don't display it yet
|
729 |
+
|
730 |
+
# Detect with CLIP model if loaded
|
731 |
+
if st.session_state.clip_model_loaded:
|
732 |
+
with st.spinner("Analyzing image with CLIP model..."):
|
733 |
+
# Preprocess image for CLIP
|
734 |
+
transform = transforms.Compose([
|
735 |
+
transforms.Resize((224, 224)),
|
736 |
+
transforms.ToTensor(),
|
737 |
+
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
|
738 |
+
])
|
739 |
+
|
740 |
+
# Create a simple dataset for the image
|
741 |
+
dataset = ImageDataset(image, transform=transform, face_only=True)
|
742 |
+
tensor, _, _, _, face_box, _ = dataset[0]
|
743 |
+
tensor = tensor.unsqueeze(0)
|
744 |
+
|
745 |
+
# Get device
|
746 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
747 |
+
|
748 |
+
# Move model and tensor to device
|
749 |
+
model = st.session_state.clip_model.to(device)
|
750 |
+
tensor = tensor.to(device)
|
751 |
+
|
752 |
+
# Forward pass
|
753 |
+
with torch.no_grad():
|
754 |
+
outputs = model.vision_model(pixel_values=tensor).pooler_output
|
755 |
+
logits = model.classification_head(outputs)
|
756 |
+
probs = torch.softmax(logits, dim=1)[0]
|
757 |
+
pred_class = torch.argmax(probs).item()
|
758 |
+
confidence = probs[pred_class].item()
|
759 |
+
pred_label = "Fake" if pred_class == 1 else "Real"
|
760 |
+
|
761 |
+
# Display results
|
762 |
+
with col2:
|
763 |
+
st.markdown("### Detection Result")
|
764 |
+
st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
|
765 |
+
|
766 |
+
# GradCAM visualization
|
767 |
+
st.subheader("GradCAM Visualization")
|
768 |
+
cam, overlay, comparison, detected_face_box = process_image_with_gradcam(
|
769 |
+
image, model, device, pred_class
|
770 |
+
)
|
771 |
+
|
772 |
+
# Display GradCAM results (controlled size)
|
773 |
+
st.image(comparison, caption="Original | CAM | Overlay", width=700)
|
774 |
+
|
775 |
+
# Generate caption for GradCAM overlay image if BLIP model is loaded
|
776 |
+
if st.session_state.blip_model_loaded:
|
777 |
+
with st.spinner("Analyzing GradCAM visualization..."):
|
778 |
+
gradcam_caption = generate_gradcam_caption(
|
779 |
+
overlay,
|
780 |
+
st.session_state.finetuned_processor,
|
781 |
+
st.session_state.finetuned_model
|
782 |
+
)
|
783 |
+
st.session_state.gradcam_caption = gradcam_caption
|
784 |
+
|
785 |
+
# Store caption but don't display it yet
|
786 |
+
|
787 |
+
# Save results in session state for LLM analysis
|
788 |
+
st.session_state.current_image = image
|
789 |
+
st.session_state.current_overlay = overlay
|
790 |
+
st.session_state.current_face_box = detected_face_box
|
791 |
+
st.session_state.current_pred_label = pred_label
|
792 |
+
st.session_state.current_confidence = confidence
|
793 |
+
|
794 |
+
st.success("✅ Initial detection and GradCAM visualization complete!")
|
795 |
+
else:
|
796 |
+
st.warning("⚠️ Please load the CLIP model first to perform initial detection.")
|
797 |
+
except Exception as e:
|
798 |
+
st.error(f"Error processing image: {str(e)}")
|
799 |
+
import traceback
|
800 |
+
st.error(traceback.format_exc()) # This will show the full error traceback
|
801 |
+
|
802 |
+
# Image Analysis Summary section - AFTER Stage 2
|
803 |
+
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
804 |
+
with st.expander("Image Analysis Summary", expanded=True):
|
805 |
+
# Display images and analysis in organized layout
|
806 |
+
col1, col2 = st.columns([1, 2])
|
807 |
+
|
808 |
+
with col1:
|
809 |
+
# Display original image
|
810 |
+
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
811 |
+
# Display GradCAM overlay
|
812 |
+
if hasattr(st.session_state, 'current_overlay'):
|
813 |
+
st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
|
814 |
+
|
815 |
+
with col2:
|
816 |
+
# Image description
|
817 |
+
if hasattr(st.session_state, 'image_caption'):
|
818 |
+
st.markdown("### Image Description")
|
819 |
+
st.markdown(st.session_state.image_caption)
|
820 |
+
st.markdown("---")
|
821 |
+
|
822 |
+
# GradCAM analysis
|
823 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
824 |
+
st.markdown("### GradCAM Analysis")
|
825 |
+
st.markdown(st.session_state.gradcam_caption)
|
826 |
+
st.markdown("---")
|
827 |
+
|
828 |
+
# LLM Analysis section - AFTER Image Analysis Summary
|
829 |
+
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
830 |
+
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
831 |
+
st.subheader("Detailed Deepfake Analysis")
|
832 |
+
|
833 |
+
# Display chat history
|
834 |
+
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
835 |
+
st.markdown(f"**Question {i+1}:** {question}")
|
836 |
+
st.markdown(f"**Answer:** {answer}")
|
837 |
+
st.markdown("---")
|
838 |
+
|
839 |
+
# Include both captions in the prompt if available
|
840 |
+
caption_text = ""
|
841 |
+
if hasattr(st.session_state, 'image_caption'):
|
842 |
+
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
|
843 |
+
|
844 |
+
if hasattr(st.session_state, 'gradcam_caption'):
|
845 |
+
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
846 |
+
|
847 |
+
# Default question with option to customize
|
848 |
+
default_question = f"This image has been classified as {{pred_label}}. Analyze all the provided images (original, GradCAM visualization, and comparison) to determine if this is a deepfake. Focus on highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
849 |
+
|
850 |
+
# User input for new question
|
851 |
+
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
|
852 |
+
|
853 |
+
# Analyze button and Clear Chat button in the same row
|
854 |
+
col1, col2 = st.columns([3, 1])
|
855 |
+
with col1:
|
856 |
+
analyze_button = st.button("🔍 Send Question", type="primary")
|
857 |
+
with col2:
|
858 |
+
clear_button = st.button("🗑️ Clear Chat History")
|
859 |
+
|
860 |
+
if clear_button:
|
861 |
+
st.session_state.chat_history = []
|
862 |
+
st.experimental_rerun()
|
863 |
+
|
864 |
+
if analyze_button and new_question:
|
865 |
+
try:
|
866 |
+
# Add caption info if it's the first question
|
867 |
+
if not st.session_state.chat_history:
|
868 |
+
full_question = new_question + caption_text
|
869 |
+
else:
|
870 |
+
full_question = new_question
|
871 |
+
|
872 |
+
result = analyze_image_with_llm(
|
873 |
+
st.session_state.current_image,
|
874 |
+
st.session_state.current_overlay,
|
875 |
+
st.session_state.current_face_box,
|
876 |
+
st.session_state.current_pred_label,
|
877 |
+
st.session_state.current_confidence,
|
878 |
+
full_question,
|
879 |
+
st.session_state.llm_model,
|
880 |
+
st.session_state.tokenizer,
|
881 |
+
temperature=temperature,
|
882 |
+
max_tokens=max_tokens,
|
883 |
+
custom_instruction=custom_instruction
|
884 |
+
)
|
885 |
+
|
886 |
+
# Add to chat history
|
887 |
+
st.session_state.chat_history.append((new_question, result))
|
888 |
+
|
889 |
+
# Display the latest result too
|
890 |
+
st.success("✅ Analysis complete!")
|
891 |
+
|
892 |
+
# Check if the result contains both technical and non-technical explanations
|
893 |
+
if "Technical" in result and "Non-Technical" in result:
|
894 |
+
try:
|
895 |
+
# Split the result into technical and non-technical sections
|
896 |
+
parts = result.split("Non-Technical")
|
897 |
+
technical = parts[0]
|
898 |
+
non_technical = "Non-Technical" + parts[1]
|
899 |
+
|
900 |
+
# Display in two columns
|
901 |
+
tech_col, simple_col = st.columns(2)
|
902 |
+
with tech_col:
|
903 |
+
st.subheader("Technical Analysis")
|
904 |
+
st.markdown(technical)
|
905 |
+
|
906 |
+
with simple_col:
|
907 |
+
st.subheader("Simple Explanation")
|
908 |
+
st.markdown(non_technical)
|
909 |
+
except Exception as e:
|
910 |
+
# Fallback if splitting fails
|
911 |
+
st.subheader("Analysis Result")
|
912 |
+
st.markdown(result)
|
913 |
+
else:
|
914 |
+
# Just display the whole result
|
915 |
+
st.subheader("Analysis Result")
|
916 |
+
st.markdown(result)
|
917 |
+
|
918 |
+
# Rerun to update the chat history display
|
919 |
+
st.experimental_rerun()
|
920 |
+
|
921 |
+
except Exception as e:
|
922 |
+
st.error(f"Error during LLM analysis: {str(e)}")
|
923 |
+
|
924 |
+
elif not hasattr(st.session_state, 'current_image'):
|
925 |
+
st.warning("⚠️ Please upload an image and complete the initial detection first.")
|
926 |
+
else:
|
927 |
+
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
|
928 |
+
|
929 |
+
# Footer
|
930 |
+
st.markdown("---")
|
931 |
+
|
932 |
+
# Add model version indicator in sidebar
|
933 |
+
st.sidebar.info("Using deepfake-explainer-2 model")
|
934 |
+
|
935 |
+
if __name__ == "__main__":
|
936 |
+
main()
|