Update app.py
Browse files
app.py
CHANGED
@@ -178,20 +178,80 @@ def check_gpu():
|
|
178 |
return False
|
179 |
|
180 |
# Sidebar components
|
181 |
-
st.sidebar.title("
|
182 |
-
st.sidebar.markdown("""
|
183 |
-
This tool detects deepfakes using three AI models:
|
184 |
-
- **Xception**: Initial Real/Fake classification
|
185 |
-
- **BLIP**: Describes image content
|
186 |
-
- **Llama 3.2**: Explains potential manipulations
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# Fixed values for temperature and max tokens
|
197 |
temperature = 0.7
|
@@ -296,7 +356,7 @@ def process_image_with_xception_gradcam(image, model, device, pred_class):
|
|
296 |
_, _, _, _, face_box, _ = dataset[0]
|
297 |
|
298 |
return raw_cam, overlay, comparison, face_box
|
299 |
-
|
300 |
st.error("Failed to generate GradCAM visualization")
|
301 |
return None, None, None, None
|
302 |
|
@@ -375,18 +435,18 @@ def generate_gradcam_caption(image, processor, model, max_length=60):
|
|
375 |
# Try to parse the caption based on different possible formats
|
376 |
try:
|
377 |
# Original format with "high activation:" etc.
|
378 |
-
|
379 |
if "high activation :" in caption:
|
380 |
high_match = caption.split("high activation :")[1].split("moderate")[0]
|
381 |
-
|
382 |
|
383 |
if "moderate activation :" in caption:
|
384 |
moderate_match = caption.split("moderate activation :")[1].split("low")[0]
|
385 |
-
|
386 |
|
387 |
if "low activation :" in caption:
|
388 |
low_match = caption.split("low activation :")[1]
|
389 |
-
|
390 |
|
391 |
# If nothing was extracted using the original format, try alternative formats
|
392 |
if not formatted_text.strip():
|
@@ -663,7 +723,7 @@ def preprocess_image_xception(image):
|
|
663 |
|
664 |
# Main app
|
665 |
def main():
|
666 |
-
# Initialize session state variables
|
667 |
if 'xception_model_loaded' not in st.session_state:
|
668 |
st.session_state.xception_model_loaded = False
|
669 |
st.session_state.xception_model = None
|
@@ -687,276 +747,240 @@ def main():
|
|
687 |
# Create multi-tab interface
|
688 |
tab1, tab2, tab3 = st.tabs(["Deepfake Detection", "Image Captions", "LLM Analysis"])
|
689 |
|
690 |
-
# Tab 1: Deepfake Detection
|
691 |
with tab1:
|
692 |
st.header("Deepfake Detection")
|
693 |
|
694 |
-
# Model Loading section
|
695 |
-
with st.expander("Load Detection Model", expanded=True):
|
696 |
-
st.write("Please load the Xception model for deepfake detection:")
|
697 |
-
if not st.session_state.xception_model_loaded:
|
698 |
-
if st.button("📥 Load Xception Model", type="primary"):
|
699 |
-
# Load Xception model
|
700 |
-
model, device = load_detection_model_xception()
|
701 |
-
if model is not None:
|
702 |
-
st.session_state.xception_model = model
|
703 |
-
st.session_state.device = device
|
704 |
-
st.session_state.xception_model_loaded = True
|
705 |
-
st.success("✅ Xception model loaded successfully!")
|
706 |
-
else:
|
707 |
-
st.error("❌ Failed to load Xception model.")
|
708 |
-
else:
|
709 |
-
st.success("✅ Xception model loaded and ready!")
|
710 |
-
|
711 |
# Image upload section
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
730 |
import traceback
|
731 |
st.error(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
|
733 |
-
with
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
headers = {
|
740 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
741 |
-
'Accept': 'image/jpeg, image/png, image/*, */*',
|
742 |
-
'Referer': 'https://huggingface.co/'
|
743 |
-
}
|
744 |
|
745 |
-
|
746 |
-
|
|
|
|
|
|
|
|
|
|
|
747 |
|
748 |
-
#
|
749 |
-
|
750 |
-
try:
|
751 |
-
response = requests.get(url, stream=True, headers=headers, timeout=10)
|
752 |
-
if response.status_code == 200 and 'image' in response.headers.get('Content-Type', ''):
|
753 |
-
try:
|
754 |
-
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
755 |
-
uploaded_image = image
|
756 |
-
st.session_state.upload_method = "url_direct"
|
757 |
-
try_methods = False
|
758 |
-
st.success("✅ Image loaded via direct request")
|
759 |
-
except Exception as e:
|
760 |
-
st.warning(f"Direct method received data but couldn't process as image: {str(e)}")
|
761 |
-
else:
|
762 |
-
st.info(f"Direct method failed: Status {response.status_code}, trying alternative method...")
|
763 |
-
except Exception as e:
|
764 |
-
st.info(f"Direct method error: {str(e)}, trying alternative method...")
|
765 |
|
766 |
-
#
|
767 |
-
|
768 |
-
try:
|
769 |
-
import urllib.request
|
770 |
-
from urllib.error import HTTPError
|
771 |
-
|
772 |
-
opener = urllib.request.build_opener()
|
773 |
-
opener.addheaders = [('User-agent', headers['User-Agent'])]
|
774 |
-
urllib.request.install_opener(opener)
|
775 |
-
|
776 |
-
with urllib.request.urlopen(url, timeout=10) as response:
|
777 |
-
image_data = response.read()
|
778 |
-
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
779 |
-
uploaded_image = image
|
780 |
-
st.session_state.upload_method = "url_urllib"
|
781 |
-
try_methods = False
|
782 |
-
st.success("✅ Image loaded via urllib")
|
783 |
-
except HTTPError as e:
|
784 |
-
st.info(f"urllib method failed: HTTP error {e.code}, trying next method...")
|
785 |
-
except Exception as e:
|
786 |
-
st.info(f"urllib method error: {str(e)}, trying next method...")
|
787 |
|
788 |
-
#
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
st.success("✅ Image loaded via proxy service")
|
801 |
-
else:
|
802 |
-
st.error(f"All methods failed to load the image from URL. Last status: {response.status_code}")
|
803 |
-
except Exception as e:
|
804 |
-
st.error(f"All methods failed. Final error: {str(e)}")
|
805 |
-
|
806 |
-
if not uploaded_image:
|
807 |
-
st.error("Failed to load image using all available methods.")
|
808 |
-
|
809 |
-
except Exception as e:
|
810 |
-
st.error(f"Error processing URL: {str(e)}")
|
811 |
-
if st.session_state.debug:
|
812 |
import traceback
|
813 |
st.error(traceback.format_exc())
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
# Continue with Xception model analysis
|
824 |
-
if st.session_state.xception_model_loaded:
|
825 |
-
try:
|
826 |
-
with st.spinner("Analyzing image with Xception model..."):
|
827 |
-
# Preprocess image for Xception
|
828 |
-
input_tensor, original_image, face_box = preprocess_image_xception(image)
|
829 |
-
|
830 |
-
if input_tensor is None:
|
831 |
-
st.error("Failed to preprocess image. Please try another image.")
|
832 |
-
st.stop()
|
833 |
-
|
834 |
-
# Get device and model
|
835 |
-
device = st.session_state.device
|
836 |
-
model = st.session_state.xception_model
|
837 |
-
|
838 |
-
# Ensure model is in eval mode
|
839 |
-
model.eval()
|
840 |
-
|
841 |
-
# Move tensor to device
|
842 |
-
input_tensor = input_tensor.to(device)
|
843 |
-
|
844 |
-
# Forward pass with proper error handling
|
845 |
-
try:
|
846 |
-
with torch.no_grad():
|
847 |
-
logits = model(input_tensor)
|
848 |
-
probabilities = torch.softmax(logits, dim=1)[0]
|
849 |
-
pred_class = torch.argmax(probabilities).item()
|
850 |
-
confidence = probabilities[pred_class].item()
|
851 |
-
|
852 |
-
# Explicit class mapping - adjust if needed based on your model
|
853 |
-
pred_label = "Fake" if pred_class == 0 else "Real"
|
854 |
-
except Exception as e:
|
855 |
-
st.error(f"Error in model inference: {str(e)}")
|
856 |
-
import traceback
|
857 |
-
st.error(traceback.format_exc())
|
858 |
-
# Set default values
|
859 |
-
pred_class = 0
|
860 |
-
confidence = 0.5
|
861 |
-
pred_label = "Error in prediction"
|
862 |
|
863 |
-
# Display
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
|
|
|
|
875 |
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
cam, overlay, comparison, detected_face_box = process_image_with_xception_gradcam(
|
880 |
-
image, model, device, pred_class
|
881 |
-
)
|
882 |
|
883 |
-
|
884 |
-
|
885 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
886 |
|
887 |
-
#
|
888 |
-
st.
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
# Save results in session state for use in other tabs
|
911 |
-
st.session_state.current_image = image
|
912 |
-
st.session_state.current_overlay = overlay if 'overlay' in locals() else None
|
913 |
-
st.session_state.current_face_box = detected_face_box if 'detected_face_box' in locals() else None
|
914 |
-
st.session_state.current_pred_label = pred_label
|
915 |
-
st.session_state.current_confidence = confidence
|
916 |
-
|
917 |
-
st.success("✅ Initial detection and GradCAM visualization complete!")
|
918 |
-
except Exception as e:
|
919 |
-
st.error(f"Overall error in Xception processing: {str(e)}")
|
920 |
-
import traceback
|
921 |
-
st.error(traceback.format_exc())
|
922 |
-
else:
|
923 |
-
st.warning("⚠️ Please load the Xception model first to perform initial detection.")
|
924 |
|
925 |
# Tab 2: Image Captions with BLIP models
|
926 |
with tab2:
|
927 |
st.header("Image Captions")
|
928 |
|
929 |
-
# Model Loading section
|
930 |
-
with st.expander("Load Captioning Models", expanded=True):
|
931 |
-
if not st.session_state.blip_model_loaded:
|
932 |
-
if st.button("📥 Load BLIP for Captioning", type="primary"):
|
933 |
-
# Load BLIP models
|
934 |
-
original_processor, original_model, finetuned_processor, finetuned_model = load_blip_models()
|
935 |
-
if all([original_processor, original_model, finetuned_processor, finetuned_model]):
|
936 |
-
st.session_state.original_processor = original_processor
|
937 |
-
st.session_state.original_model = original_model
|
938 |
-
st.session_state.finetuned_processor = finetuned_processor
|
939 |
-
st.session_state.finetuned_model = finetuned_model
|
940 |
-
st.session_state.blip_model_loaded = True
|
941 |
-
st.success("✅ BLIP captioning models loaded successfully!")
|
942 |
-
else:
|
943 |
-
st.error("❌ Failed to load BLIP models.")
|
944 |
-
else:
|
945 |
-
st.success("✅ BLIP captioning models loaded and ready!")
|
946 |
-
|
947 |
# Image Caption Display
|
948 |
if hasattr(st.session_state, 'current_image'):
|
949 |
col1, col2 = st.columns([1, 2])
|
950 |
|
951 |
with col1:
|
952 |
-
st.image(st.session_state.current_image, caption="Image", width=300)
|
953 |
|
954 |
if hasattr(st.session_state, 'current_overlay'):
|
955 |
st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
|
956 |
|
957 |
with col2:
|
958 |
if not st.session_state.blip_model_loaded:
|
959 |
-
st.warning("⚠️ Please load the BLIP models
|
960 |
else:
|
961 |
# Button to generate captions if not already generated
|
962 |
if not hasattr(st.session_state, 'image_caption') or st.button("Regenerate Image Caption"):
|
@@ -990,7 +1014,18 @@ def main():
|
|
990 |
st.session_state.gradcam_caption = gradcam_caption
|
991 |
st.rerun()
|
992 |
else:
|
993 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
994 |
else:
|
995 |
st.info("Please upload and analyze an image in the Detection tab first.")
|
996 |
|
@@ -998,22 +1033,6 @@ def main():
|
|
998 |
with tab3:
|
999 |
st.header("LLM Analysis")
|
1000 |
|
1001 |
-
# Model Loading section
|
1002 |
-
with st.expander("Load LLM Model", expanded=True):
|
1003 |
-
if not st.session_state.llm_model_loaded:
|
1004 |
-
if st.button("📥 Load Vision LLM", type="primary"):
|
1005 |
-
# Load LLM model
|
1006 |
-
model, tokenizer = load_llm_model()
|
1007 |
-
if model is not None and tokenizer is not None:
|
1008 |
-
st.session_state.llm_model = model
|
1009 |
-
st.session_state.tokenizer = tokenizer
|
1010 |
-
st.session_state.llm_model_loaded = True
|
1011 |
-
st.success("✅ Vision LLM loaded successfully!")
|
1012 |
-
else:
|
1013 |
-
st.error("❌ Failed to load Vision LLM.")
|
1014 |
-
else:
|
1015 |
-
st.success("✅ Vision LLM loaded and ready!")
|
1016 |
-
|
1017 |
# Chat Interface
|
1018 |
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
1019 |
st.subheader("Deepfake Analysis Chat")
|
@@ -1140,7 +1159,7 @@ def main():
|
|
1140 |
if not hasattr(st.session_state, 'current_image'):
|
1141 |
st.warning("⚠️ Please upload an image in the Detection tab first.")
|
1142 |
else:
|
1143 |
-
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
|
1144 |
|
1145 |
# Footer
|
1146 |
st.markdown("---")
|
|
|
178 |
return False
|
179 |
|
180 |
# Sidebar components
|
181 |
+
st.sidebar.title("Model Controls")
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
# Model loading buttons in sidebar
|
184 |
+
with st.sidebar:
|
185 |
+
st.write("### Load Models")
|
186 |
+
|
187 |
+
# Xception model loading
|
188 |
+
if 'xception_model_loaded' not in st.session_state:
|
189 |
+
st.session_state.xception_model_loaded = False
|
190 |
+
st.session_state.xception_model = None
|
191 |
+
|
192 |
+
if not st.session_state.xception_model_loaded:
|
193 |
+
if st.button("📥 Load Xception Model", type="primary"):
|
194 |
+
# Load Xception model
|
195 |
+
model, device = load_detection_model_xception()
|
196 |
+
if model is not None:
|
197 |
+
st.session_state.xception_model = model
|
198 |
+
st.session_state.device = device
|
199 |
+
st.session_state.xception_model_loaded = True
|
200 |
+
st.success("✅ Xception model loaded!")
|
201 |
+
else:
|
202 |
+
st.error("❌ Failed to load Xception model.")
|
203 |
+
else:
|
204 |
+
st.success("✅ Xception model loaded")
|
205 |
+
|
206 |
+
# BLIP model loading
|
207 |
+
if 'blip_model_loaded' not in st.session_state:
|
208 |
+
st.session_state.blip_model_loaded = False
|
209 |
+
st.session_state.original_processor = None
|
210 |
+
st.session_state.original_model = None
|
211 |
+
st.session_state.finetuned_processor = None
|
212 |
+
st.session_state.finetuned_model = None
|
213 |
+
|
214 |
+
if not st.session_state.blip_model_loaded:
|
215 |
+
if st.button("📥 Load BLIP Models", type="primary"):
|
216 |
+
# Load BLIP models
|
217 |
+
original_processor, original_model, finetuned_processor, finetuned_model = load_blip_models()
|
218 |
+
if all([original_processor, original_model, finetuned_processor, finetuned_model]):
|
219 |
+
st.session_state.original_processor = original_processor
|
220 |
+
st.session_state.original_model = original_model
|
221 |
+
st.session_state.finetuned_processor = finetuned_processor
|
222 |
+
st.session_state.finetuned_model = finetuned_model
|
223 |
+
st.session_state.blip_model_loaded = True
|
224 |
+
st.success("✅ BLIP models loaded!")
|
225 |
+
else:
|
226 |
+
st.error("❌ Failed to load BLIP models.")
|
227 |
+
else:
|
228 |
+
st.success("✅ BLIP models loaded")
|
229 |
+
|
230 |
+
# LLM model loading
|
231 |
+
if 'llm_model_loaded' not in st.session_state:
|
232 |
+
st.session_state.llm_model_loaded = False
|
233 |
+
st.session_state.llm_model = None
|
234 |
+
st.session_state.tokenizer = None
|
235 |
+
|
236 |
+
if not st.session_state.llm_model_loaded:
|
237 |
+
if st.button("📥 Load Vision LLM", type="primary"):
|
238 |
+
# Load LLM model
|
239 |
+
model, tokenizer = load_llm_model()
|
240 |
+
if model is not None and tokenizer is not None:
|
241 |
+
st.session_state.llm_model = model
|
242 |
+
st.session_state.tokenizer = tokenizer
|
243 |
+
st.session_state.llm_model_loaded = True
|
244 |
+
st.success("✅ Vision LLM loaded!")
|
245 |
+
else:
|
246 |
+
st.error("❌ Failed to load Vision LLM.")
|
247 |
+
else:
|
248 |
+
st.success("✅ Vision LLM loaded")
|
249 |
+
|
250 |
+
# Debug toggle
|
251 |
+
st.session_state.debug = st.toggle("Enable Debug Mode", value=debug_mode)
|
252 |
+
|
253 |
+
# Display model info
|
254 |
+
st.info("Using Xception + deepfake-explainer-new models")
|
255 |
|
256 |
# Fixed values for temperature and max tokens
|
257 |
temperature = 0.7
|
|
|
356 |
_, _, _, _, face_box, _ = dataset[0]
|
357 |
|
358 |
return raw_cam, overlay, comparison, face_box
|
359 |
+
else:
|
360 |
st.error("Failed to generate GradCAM visualization")
|
361 |
return None, None, None, None
|
362 |
|
|
|
435 |
# Try to parse the caption based on different possible formats
|
436 |
try:
|
437 |
# Original format with "high activation:" etc.
|
438 |
+
formatted_text = ""
|
439 |
if "high activation :" in caption:
|
440 |
high_match = caption.split("high activation :")[1].split("moderate")[0]
|
441 |
+
formatted_text += f"**High activation**:\n{high_match.strip()}\n\n"
|
442 |
|
443 |
if "moderate activation :" in caption:
|
444 |
moderate_match = caption.split("moderate activation :")[1].split("low")[0]
|
445 |
+
formatted_text += f"**Moderate activation**:\n{moderate_match.strip()}\n\n"
|
446 |
|
447 |
if "low activation :" in caption:
|
448 |
low_match = caption.split("low activation :")[1]
|
449 |
+
formatted_text += f"**Low activation**:\n{low_match.strip()}"
|
450 |
|
451 |
# If nothing was extracted using the original format, try alternative formats
|
452 |
if not formatted_text.strip():
|
|
|
723 |
|
724 |
# Main app
|
725 |
def main():
|
726 |
+
# Initialize session state variables if not present
|
727 |
if 'xception_model_loaded' not in st.session_state:
|
728 |
st.session_state.xception_model_loaded = False
|
729 |
st.session_state.xception_model = None
|
|
|
747 |
# Create multi-tab interface
|
748 |
tab1, tab2, tab3 = st.tabs(["Deepfake Detection", "Image Captions", "LLM Analysis"])
|
749 |
|
750 |
+
# Tab 1: Deepfake Detection
|
751 |
with tab1:
|
752 |
st.header("Deepfake Detection")
|
753 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
754 |
# Image upload section
|
755 |
+
st.subheader("Upload an Image")
|
756 |
+
|
757 |
+
# Add alternative upload methods
|
758 |
+
upload_tab1, upload_tab2 = st.tabs(["File Upload", "URL Input"])
|
759 |
+
|
760 |
+
uploaded_image = None
|
761 |
+
|
762 |
+
with upload_tab1:
|
763 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
764 |
+
if uploaded_file is not None:
|
765 |
+
try:
|
766 |
+
# Simple direct approach - load the image directly
|
767 |
+
image = Image.open(uploaded_file).convert("RGB")
|
768 |
+
uploaded_image = image
|
769 |
+
st.session_state.upload_method = "file"
|
770 |
+
except Exception as e:
|
771 |
+
st.error(f"Error loading image: {str(e)}")
|
772 |
+
import traceback
|
773 |
+
st.error(traceback.format_exc())
|
774 |
+
|
775 |
+
with upload_tab2:
|
776 |
+
url = st.text_input("Enter image URL:")
|
777 |
+
if url and url.strip():
|
778 |
+
try:
|
779 |
+
import requests
|
780 |
+
# Simplified URL handling with more robust approach
|
781 |
+
headers = {
|
782 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
783 |
+
'Accept': 'image/jpeg, image/png, image/*, */*',
|
784 |
+
'Referer': 'https://huggingface.co/'
|
785 |
+
}
|
786 |
+
|
787 |
+
# Try three different methods to handle various API restrictions
|
788 |
+
try_methods = True
|
789 |
+
|
790 |
+
# Method 1: Direct requests
|
791 |
+
if try_methods:
|
792 |
+
try:
|
793 |
+
response = requests.get(url, stream=True, headers=headers, timeout=10)
|
794 |
+
if response.status_code == 200 and 'image' in response.headers.get('Content-Type', ''):
|
795 |
+
try:
|
796 |
+
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
797 |
+
uploaded_image = image
|
798 |
+
st.session_state.upload_method = "url_direct"
|
799 |
+
try_methods = False
|
800 |
+
st.success("✅ Image loaded via direct request")
|
801 |
+
except Exception as e:
|
802 |
+
st.warning(f"Direct method received data but couldn't process as image: {str(e)}")
|
803 |
+
else:
|
804 |
+
st.info(f"Direct method failed: Status {response.status_code}, trying alternative method...")
|
805 |
+
except Exception as e:
|
806 |
+
st.info(f"Direct method error: {str(e)}, trying alternative method...")
|
807 |
+
|
808 |
+
# Method 2: Use Python's urllib as fallback
|
809 |
+
if try_methods:
|
810 |
+
try:
|
811 |
+
import urllib.request
|
812 |
+
from urllib.error import HTTPError
|
813 |
+
|
814 |
+
opener = urllib.request.build_opener()
|
815 |
+
opener.addheaders = [('User-agent', headers['User-Agent'])]
|
816 |
+
urllib.request.install_opener(opener)
|
817 |
+
|
818 |
+
with urllib.request.urlopen(url, timeout=10) as response:
|
819 |
+
image_data = response.read()
|
820 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
821 |
+
uploaded_image = image
|
822 |
+
st.session_state.upload_method = "url_urllib"
|
823 |
+
try_methods = False
|
824 |
+
st.success("✅ Image loaded via urllib")
|
825 |
+
except HTTPError as e:
|
826 |
+
st.info(f"urllib method failed: HTTP error {e.code}, trying next method...")
|
827 |
+
except Exception as e:
|
828 |
+
st.info(f"urllib method error: {str(e)}, trying next method...")
|
829 |
+
|
830 |
+
# Method 3: Use a proxy service as last resort
|
831 |
+
if try_methods:
|
832 |
+
try:
|
833 |
+
# This uses an image proxy service to bypass CORS issues
|
834 |
+
# Only as last resort since it depends on external service
|
835 |
+
proxy_url = f"https://images.weserv.nl/?url={url}"
|
836 |
+
response = requests.get(proxy_url, stream=True, timeout=10)
|
837 |
+
if response.status_code == 200:
|
838 |
+
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
839 |
+
uploaded_image = image
|
840 |
+
st.session_state.upload_method = "url_proxy"
|
841 |
+
try_methods = False
|
842 |
+
st.success("✅ Image loaded via proxy service")
|
843 |
+
else:
|
844 |
+
st.error(f"All methods failed to load the image from URL. Last status: {response.status_code}")
|
845 |
+
except Exception as e:
|
846 |
+
st.error(f"All methods failed. Final error: {str(e)}")
|
847 |
+
|
848 |
+
if not uploaded_image:
|
849 |
+
st.error("Failed to load image using all available methods.")
|
850 |
+
|
851 |
+
except Exception as e:
|
852 |
+
st.error(f"Error processing URL: {str(e)}")
|
853 |
+
if st.session_state.debug:
|
854 |
import traceback
|
855 |
st.error(traceback.format_exc())
|
856 |
+
|
857 |
+
# If we have an uploaded image, process it
|
858 |
+
if uploaded_image is not None:
|
859 |
+
# Display the image
|
860 |
+
image = uploaded_image
|
861 |
+
col1, col2 = st.columns([1, 2])
|
862 |
+
with col1:
|
863 |
+
st.image(image, caption="Uploaded Image", width=300)
|
864 |
|
865 |
+
# Continue with Xception model analysis
|
866 |
+
if st.session_state.xception_model_loaded:
|
867 |
+
try:
|
868 |
+
with st.spinner("Analyzing image with Xception model..."):
|
869 |
+
# Preprocess image for Xception
|
870 |
+
input_tensor, original_image, face_box = preprocess_image_xception(image)
|
|
|
|
|
|
|
|
|
|
|
871 |
|
872 |
+
if input_tensor is None:
|
873 |
+
st.error("Failed to preprocess image. Please try another image.")
|
874 |
+
st.stop()
|
875 |
+
|
876 |
+
# Get device and model
|
877 |
+
device = st.session_state.device
|
878 |
+
model = st.session_state.xception_model
|
879 |
|
880 |
+
# Ensure model is in eval mode
|
881 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
|
883 |
+
# Move tensor to device
|
884 |
+
input_tensor = input_tensor.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
885 |
|
886 |
+
# Forward pass with proper error handling
|
887 |
+
try:
|
888 |
+
with torch.no_grad():
|
889 |
+
logits = model(input_tensor)
|
890 |
+
probabilities = torch.softmax(logits, dim=1)[0]
|
891 |
+
pred_class = torch.argmax(probabilities).item()
|
892 |
+
confidence = probabilities[pred_class].item()
|
893 |
+
|
894 |
+
# Explicit class mapping - adjust if needed based on your model
|
895 |
+
pred_label = "Fake" if pred_class == 0 else "Real"
|
896 |
+
except Exception as e:
|
897 |
+
st.error(f"Error in model inference: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
import traceback
|
899 |
st.error(traceback.format_exc())
|
900 |
+
# Set default values
|
901 |
+
pred_class = 0
|
902 |
+
confidence = 0.5
|
903 |
+
pred_label = "Error in prediction"
|
904 |
+
|
905 |
+
# Display results
|
906 |
+
with col2:
|
907 |
+
st.markdown("### Detection Result")
|
908 |
+
st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
909 |
|
910 |
+
# Display face box on image if detected
|
911 |
+
if face_box:
|
912 |
+
img_to_show = original_image.copy()
|
913 |
+
img_draw = np.array(img_to_show)
|
914 |
+
x, y, w, h = face_box
|
915 |
+
cv2.rectangle(img_draw, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
916 |
+
st.image(Image.fromarray(img_draw), caption="Detected Face", width=300)
|
917 |
+
|
918 |
+
# GradCAM visualization with error handling
|
919 |
+
st.subheader("GradCAM Visualization")
|
920 |
+
try:
|
921 |
+
cam, overlay, comparison, detected_face_box = process_image_with_xception_gradcam(
|
922 |
+
image, model, device, pred_class
|
923 |
+
)
|
924 |
|
925 |
+
if comparison:
|
926 |
+
# Display GradCAM results (controlled size)
|
927 |
+
st.image(comparison, caption="Original | CAM | Overlay", width=700)
|
|
|
|
|
|
|
928 |
|
929 |
+
# Save for later use
|
930 |
+
st.session_state.comparison_image = comparison
|
931 |
+
else:
|
932 |
+
st.error("GradCAM visualization failed - comparison image not generated")
|
933 |
+
|
934 |
+
# Generate caption for GradCAM overlay image if BLIP model is loaded
|
935 |
+
if st.session_state.blip_model_loaded and overlay:
|
936 |
+
with st.spinner("Analyzing GradCAM visualization..."):
|
937 |
+
gradcam_caption = generate_gradcam_caption(
|
938 |
+
overlay,
|
939 |
+
st.session_state.finetuned_processor,
|
940 |
+
st.session_state.finetuned_model
|
941 |
+
)
|
942 |
+
st.session_state.gradcam_caption = gradcam_caption
|
943 |
|
944 |
+
# Display the caption directly here
|
945 |
+
st.markdown("### GradCAM Analysis")
|
946 |
+
st.markdown(gradcam_caption)
|
947 |
+
except Exception as e:
|
948 |
+
st.error(f"Error generating GradCAM: {str(e)}")
|
949 |
+
import traceback
|
950 |
+
st.error(traceback.format_exc())
|
951 |
+
|
952 |
+
# Save results in session state for use in other tabs
|
953 |
+
st.session_state.current_image = image
|
954 |
+
st.session_state.current_overlay = overlay if 'overlay' in locals() else None
|
955 |
+
st.session_state.current_face_box = detected_face_box if 'detected_face_box' in locals() else None
|
956 |
+
st.session_state.current_pred_label = pred_label
|
957 |
+
st.session_state.current_confidence = confidence
|
958 |
+
|
959 |
+
st.success("✅ Initial detection and GradCAM visualization complete!")
|
960 |
+
except Exception as e:
|
961 |
+
st.error(f"Overall error in Xception processing: {str(e)}")
|
962 |
+
import traceback
|
963 |
+
st.error(traceback.format_exc())
|
964 |
+
else:
|
965 |
+
st.warning("⚠️ Please load the Xception model from the sidebar first.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
966 |
|
967 |
# Tab 2: Image Captions with BLIP models
|
968 |
with tab2:
|
969 |
st.header("Image Captions")
|
970 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
971 |
# Image Caption Display
|
972 |
if hasattr(st.session_state, 'current_image'):
|
973 |
col1, col2 = st.columns([1, 2])
|
974 |
|
975 |
with col1:
|
976 |
+
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
977 |
|
978 |
if hasattr(st.session_state, 'current_overlay'):
|
979 |
st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
|
980 |
|
981 |
with col2:
|
982 |
if not st.session_state.blip_model_loaded:
|
983 |
+
st.warning("⚠️ Please load the BLIP models from the sidebar first.")
|
984 |
else:
|
985 |
# Button to generate captions if not already generated
|
986 |
if not hasattr(st.session_state, 'image_caption') or st.button("Regenerate Image Caption"):
|
|
|
1014 |
st.session_state.gradcam_caption = gradcam_caption
|
1015 |
st.rerun()
|
1016 |
else:
|
1017 |
+
if hasattr(st.session_state, 'current_overlay'):
|
1018 |
+
if st.button("Generate GradCAM Caption"):
|
1019 |
+
with st.spinner("Analyzing GradCAM visualization..."):
|
1020 |
+
gradcam_caption = generate_gradcam_caption(
|
1021 |
+
st.session_state.current_overlay,
|
1022 |
+
st.session_state.finetuned_processor,
|
1023 |
+
st.session_state.finetuned_model
|
1024 |
+
)
|
1025 |
+
st.session_state.gradcam_caption = gradcam_caption
|
1026 |
+
st.rerun()
|
1027 |
+
else:
|
1028 |
+
st.info("GradCAM visualization not available. Visit the Detection tab to generate it.")
|
1029 |
else:
|
1030 |
st.info("Please upload and analyze an image in the Detection tab first.")
|
1031 |
|
|
|
1033 |
with tab3:
|
1034 |
st.header("LLM Analysis")
|
1035 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1036 |
# Chat Interface
|
1037 |
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
1038 |
st.subheader("Deepfake Analysis Chat")
|
|
|
1159 |
if not hasattr(st.session_state, 'current_image'):
|
1160 |
st.warning("⚠️ Please upload an image in the Detection tab first.")
|
1161 |
else:
|
1162 |
+
st.warning("⚠️ Please load the Vision LLM from the sidebar to perform detailed analysis.")
|
1163 |
|
1164 |
# Footer
|
1165 |
st.markdown("---")
|