# app.py import streamlit as st import torch from PIL import Image import io from transformers import AutoProcessor, AutoModelForCausalLM from peft import PeftModel # Page config st.set_page_config( page_title="Deepfake Explainer", page_icon="🔍", layout="wide" ) # App title and description st.title("Deepfake Image Analyzer") st.markdown("Upload an image to analyze it for possible deepfake manipulation") @st.cache_resource def load_model(): """Load model and processor (cached to avoid reloading)""" # Load base model base_model_id = "unsloth/llama-3.2-11b-vision-instruct" processor = AutoProcessor.from_pretrained(base_model_id) model = AutoModelForCausalLM.from_pretrained( base_model_id, device_map="auto", torch_dtype=torch.float16 ) # Load adapter adapter_id = "saakshigupta/deepfake-explainer-1" model = PeftModel.from_pretrained(model, adapter_id) return model, processor # Function to fix cross-attention masks def fix_processor_outputs(inputs): if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape: batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape visual_features = 6404 # The exact dimension we fixed in training new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles), device=inputs['cross_attention_mask'].device) inputs['cross_attention_mask'] = new_mask st.write("✅ Fixed cross-attention mask dimensions") return inputs # Load model on first run with st.spinner("Loading model... this may take a minute."): model, processor = load_model() st.success("Model loaded successfully!") # Create sidebar with options with st.sidebar: st.header("Options") temperature = st.slider("Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.1, help="Higher values make output more random, lower values more deterministic") max_length = st.slider("Maximum response length", min_value=100, max_value=1000, value=500, step=50) custom_prompt = st.text_area( "Custom instruction (optional)", value="Analyze this image and determine if it's a deepfake. Provide both technical and non-technical explanations.", height=100 ) st.markdown("### About") st.markdown("This app uses a fine-tuned Llama 3.2 Vision model to detect and explain deepfakes.") st.markdown("Model by [saakshigupta](https://huggingface.co/saakshigupta/deepfake-explainer-1)") # Main content area - file uploader uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display the image image = Image.open(uploaded_file).convert('RGB') st.image(image, caption="Uploaded Image", use_column_width=True) # Analyze button if st.button("Analyze Image"): with st.spinner("Analyzing the image..."): # Process the image inputs = processor(text=custom_prompt, images=image, return_tensors="pt") # Fix cross-attention mask inputs = fix_processor_outputs(inputs) # Move to device inputs = {k: v.to(model.device) for k, v in inputs.items() if isinstance(v, torch.Tensor)} # Generate the analysis with torch.no_grad(): output_ids = model.generate( **inputs, max_new_tokens=max_length, temperature=temperature, top_p=0.9 ) # Decode the output response = processor.decode(output_ids[0], skip_special_tokens=True) # Extract the actual response (removing the prompt) if custom_prompt in response: result = response.split(custom_prompt)[-1].strip() else: result = response # Display result in a nice format st.success("Analysis complete!") # Show technical and non-technical explanations separately if they exist if "Technical Explanation:" in result and "Non-Technical Explanation:" in result: technical, non_technical = result.split("Non-Technical Explanation:") technical = technical.replace("Technical Explanation:", "").strip() col1, col2 = st.columns(2) with col1: st.subheader("Technical Analysis") st.write(technical) with col2: st.subheader("Simple Explanation") st.write(non_technical) else: st.subheader("Analysis Result") st.write(result) else: st.info("Please upload an image to begin analysis")