Update app.py
Browse files
app.py
CHANGED
@@ -20,13 +20,13 @@ warnings.filterwarnings("ignore", category=UserWarning)
|
|
20 |
|
21 |
# App title and description
|
22 |
st.set_page_config(
|
23 |
-
page_title="Deepfake
|
24 |
layout="wide",
|
25 |
page_icon="🔍"
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
-
st.title("
|
30 |
st.markdown("Analyze images for deepfake manipulation with multi-stage analysis")
|
31 |
|
32 |
# Check for GPU availability
|
@@ -42,25 +42,9 @@ def check_gpu():
|
|
42 |
# Sidebar components
|
43 |
st.sidebar.title("Options")
|
44 |
|
45 |
-
#
|
46 |
-
temperature =
|
47 |
-
|
48 |
-
min_value=0.1,
|
49 |
-
max_value=1.0,
|
50 |
-
value=0.7,
|
51 |
-
step=0.1,
|
52 |
-
help="Higher values make output more random, lower values more deterministic"
|
53 |
-
)
|
54 |
-
|
55 |
-
# Max response length slider
|
56 |
-
max_tokens = st.sidebar.slider(
|
57 |
-
"Maximum Response Length",
|
58 |
-
min_value=100,
|
59 |
-
max_value=1000,
|
60 |
-
value=500,
|
61 |
-
step=50,
|
62 |
-
help="The maximum number of tokens in the response"
|
63 |
-
)
|
64 |
|
65 |
# Custom instruction text area in sidebar
|
66 |
custom_instruction = st.sidebar.text_area(
|
@@ -558,7 +542,11 @@ def load_llm_model():
|
|
558 |
return None, None
|
559 |
|
560 |
# Analyze image function
|
561 |
-
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer,
|
|
|
|
|
|
|
|
|
562 |
# Create a prompt that includes GradCAM information
|
563 |
if custom_instruction.strip():
|
564 |
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
@@ -773,150 +761,4 @@ def main():
|
|
773 |
st.session_state.current_pred_label = pred_label
|
774 |
st.session_state.current_confidence = confidence
|
775 |
|
776 |
-
st.success("✅ Initial detection and GradCAM visualization complete!")
|
777 |
-
else:
|
778 |
-
st.warning("⚠️ Please load the CLIP model first to perform initial detection.")
|
779 |
-
except Exception as e:
|
780 |
-
st.error(f"Error processing image: {str(e)}")
|
781 |
-
import traceback
|
782 |
-
st.error(traceback.format_exc()) # This will show the full error traceback
|
783 |
-
|
784 |
-
# Image Analysis Summary section - AFTER Stage 2
|
785 |
-
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
|
786 |
-
with st.expander("Image Analysis Summary", expanded=True):
|
787 |
-
st.subheader("Generated Descriptions and Analysis")
|
788 |
-
|
789 |
-
# Display image, captions, and results in organized layout with proper formatting
|
790 |
-
col1, col2 = st.columns([1, 2])
|
791 |
-
|
792 |
-
with col1:
|
793 |
-
# Display original image and overlay side by side with controlled size
|
794 |
-
st.image(st.session_state.current_image, caption="Original Image", width=300)
|
795 |
-
if hasattr(st.session_state, 'current_overlay'):
|
796 |
-
st.image(st.session_state.current_overlay, caption="GradCAM Overlay", width=300)
|
797 |
-
|
798 |
-
with col2:
|
799 |
-
# Detection result
|
800 |
-
if hasattr(st.session_state, 'current_pred_label'):
|
801 |
-
st.markdown("### Detection Result")
|
802 |
-
st.markdown(f"**Classification:** {st.session_state.current_pred_label} (Confidence: {st.session_state.current_confidence:.2%})")
|
803 |
-
st.markdown("---")
|
804 |
-
|
805 |
-
# Image description
|
806 |
-
if hasattr(st.session_state, 'image_caption'):
|
807 |
-
st.markdown("### Image Description")
|
808 |
-
st.markdown(st.session_state.image_caption)
|
809 |
-
st.markdown("---")
|
810 |
-
|
811 |
-
# GradCAM analysis
|
812 |
-
if hasattr(st.session_state, 'gradcam_caption'):
|
813 |
-
st.markdown("### GradCAM Analysis")
|
814 |
-
st.markdown(st.session_state.gradcam_caption)
|
815 |
-
|
816 |
-
# LLM Analysis section - AFTER Image Analysis Summary
|
817 |
-
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
|
818 |
-
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
|
819 |
-
st.subheader("Detailed Deepfake Analysis")
|
820 |
-
|
821 |
-
# Display chat history
|
822 |
-
for i, (question, answer) in enumerate(st.session_state.chat_history):
|
823 |
-
st.markdown(f"**Question {i+1}:** {question}")
|
824 |
-
st.markdown(f"**Answer:** {answer}")
|
825 |
-
st.markdown("---")
|
826 |
-
|
827 |
-
# Include both captions in the prompt if available
|
828 |
-
caption_text = ""
|
829 |
-
if hasattr(st.session_state, 'image_caption'):
|
830 |
-
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
|
831 |
-
|
832 |
-
if hasattr(st.session_state, 'gradcam_caption'):
|
833 |
-
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
|
834 |
-
|
835 |
-
# Default question with option to customize
|
836 |
-
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
|
837 |
-
|
838 |
-
# User input for new question
|
839 |
-
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
|
840 |
-
|
841 |
-
# Analyze button and Clear Chat button in the same row
|
842 |
-
col1, col2 = st.columns([3, 1])
|
843 |
-
with col1:
|
844 |
-
analyze_button = st.button("🔍 Send Question", type="primary")
|
845 |
-
with col2:
|
846 |
-
clear_button = st.button("🗑️ Clear Chat History")
|
847 |
-
|
848 |
-
if clear_button:
|
849 |
-
st.session_state.chat_history = []
|
850 |
-
st.experimental_rerun()
|
851 |
-
|
852 |
-
if analyze_button and new_question:
|
853 |
-
try:
|
854 |
-
# Add caption info if it's the first question
|
855 |
-
if not st.session_state.chat_history:
|
856 |
-
full_question = new_question + caption_text
|
857 |
-
else:
|
858 |
-
full_question = new_question
|
859 |
-
|
860 |
-
result = analyze_image_with_llm(
|
861 |
-
st.session_state.current_image,
|
862 |
-
st.session_state.current_overlay,
|
863 |
-
st.session_state.current_face_box,
|
864 |
-
st.session_state.current_pred_label,
|
865 |
-
st.session_state.current_confidence,
|
866 |
-
full_question,
|
867 |
-
st.session_state.llm_model,
|
868 |
-
st.session_state.tokenizer,
|
869 |
-
temperature=temperature,
|
870 |
-
max_tokens=max_tokens,
|
871 |
-
custom_instruction=custom_instruction
|
872 |
-
)
|
873 |
-
|
874 |
-
# Add to chat history
|
875 |
-
st.session_state.chat_history.append((new_question, result))
|
876 |
-
|
877 |
-
# Display the latest result too
|
878 |
-
st.success("✅ Analysis complete!")
|
879 |
-
|
880 |
-
# Check if the result contains both technical and non-technical explanations
|
881 |
-
if "Technical" in result and "Non-Technical" in result:
|
882 |
-
try:
|
883 |
-
# Split the result into technical and non-technical sections
|
884 |
-
parts = result.split("Non-Technical")
|
885 |
-
technical = parts[0]
|
886 |
-
non_technical = "Non-Technical" + parts[1]
|
887 |
-
|
888 |
-
# Display in two columns
|
889 |
-
tech_col, simple_col = st.columns(2)
|
890 |
-
with tech_col:
|
891 |
-
st.subheader("Technical Analysis")
|
892 |
-
st.markdown(technical)
|
893 |
-
|
894 |
-
with simple_col:
|
895 |
-
st.subheader("Simple Explanation")
|
896 |
-
st.markdown(non_technical)
|
897 |
-
except Exception as e:
|
898 |
-
# Fallback if splitting fails
|
899 |
-
st.subheader("Analysis Result")
|
900 |
-
st.markdown(result)
|
901 |
-
else:
|
902 |
-
# Just display the whole result
|
903 |
-
st.subheader("Analysis Result")
|
904 |
-
st.markdown(result)
|
905 |
-
|
906 |
-
# Rerun to update the chat history display
|
907 |
-
st.experimental_rerun()
|
908 |
-
|
909 |
-
except Exception as e:
|
910 |
-
st.error(f"Error during LLM analysis: {str(e)}")
|
911 |
-
|
912 |
-
elif not hasattr(st.session_state, 'current_image'):
|
913 |
-
st.warning("⚠️ Please upload an image and complete the initial detection first.")
|
914 |
-
else:
|
915 |
-
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
|
916 |
-
|
917 |
-
# Footer
|
918 |
-
st.markdown("---")
|
919 |
-
st.caption("Advanced Deepfake Image Analyzer with Structured BLIP Captioning")
|
920 |
-
|
921 |
-
if __name__ == "__main__":
|
922 |
-
main()
|
|
|
20 |
|
21 |
# App title and description
|
22 |
st.set_page_config(
|
23 |
+
page_title="Deepfake Image Analyser",
|
24 |
layout="wide",
|
25 |
page_icon="🔍"
|
26 |
)
|
27 |
|
28 |
# Main title and description
|
29 |
+
st.title("Deepfake Image Analyser")
|
30 |
st.markdown("Analyze images for deepfake manipulation with multi-stage analysis")
|
31 |
|
32 |
# Check for GPU availability
|
|
|
42 |
# Sidebar components
|
43 |
st.sidebar.title("Options")
|
44 |
|
45 |
+
# Fixed values instead of sliders
|
46 |
+
temperature = 0.7 # Fixed temperature value
|
47 |
+
max_tokens = 500 # Fixed max tokens value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Custom instruction text area in sidebar
|
50 |
custom_instruction = st.sidebar.text_area(
|
|
|
542 |
return None, None
|
543 |
|
544 |
# Analyze image function
|
545 |
+
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, custom_instruction=""):
|
546 |
+
# Use fixed values for temperature and max_tokens
|
547 |
+
temperature = 0.7 # Fixed temperature value
|
548 |
+
max_tokens = 500 # Fixed max tokens value
|
549 |
+
|
550 |
# Create a prompt that includes GradCAM information
|
551 |
if custom_instruction.strip():
|
552 |
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
|
|
|
761 |
st.session_state.current_pred_label = pred_label
|
762 |
st.session_state.current_confidence = confidence
|
763 |
|
764 |
+
st.success("✅ Initial detection and GradCAM visualization complete!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|