Spaces:
Runtime error
Runtime error
File size: 13,416 Bytes
3d91cf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import torch
from diffusers import DPMSolverMultistepScheduler, UniPCMultistepScheduler
from typing import List
def AdamBmixer(order, ets, b=1):
cur_order = min(order, len(ets))
if cur_order == 1:
prime = b * ets[-1]
elif cur_order == 2:
prime = ((2+b) * ets[-1] - (2-b)*ets[-2]) / 2
elif cur_order == 3:
prime = ((18+5*b) * ets[-1] - (24-8*b) * ets[-2] + (6-1*b) * ets[-3]) / 12
elif cur_order == 4:
prime = ((46+9*b) * ets[-1] - (78-19*b) * ets[-2] + (42-5*b) * ets[-3] - (10-b) * ets[-4]) / 24
elif cur_order == 5:
prime = ((1650+251*b) * ets[-1] - (3420-646*b) * ets[-2]
+ (2880-264*b) * ets[-3] - (1380-106*b) * ets[-4]
+ (270-19*b)* ets[-5]) / 720
else:
raise NotImplementedError
prime = prime/b
return prime
class PLMSWithHBScheduler():
"""
PLMS with Polyak's Heavy Ball Momentum (HB) for diffusion ODEs.
We implement it as a wrapper for schedulers in diffusers (https://github.com/huggingface/diffusers)
When order is an integer, this method is equivalent to PLMS without momentum.
"""
def __init__(self, scheduler, order):
self.scheduler = scheduler
self.ets = []
self.update_order(order)
self.mixer = AdamBmixer
def update_order(self, order):
self.order = order // 1 + 1 if order%1 > 0 else order // 1
self.beta = order % 1 if order%1 > 0 else 1
self.vel = None
def clear(self):
self.ets = []
self.vel = None
def update_ets(self, val):
self.ets.append(val)
if len(self.ets) > self.order:
self.ets.pop(0)
def _step_with_momentum(self, grads):
self.update_ets(grads)
prime = self.mixer(self.order, self.ets, 1.0)
self.vel = (1 - self.beta) * self.vel + self.beta * prime
return self.vel
def step(
self,
grads: torch.FloatTensor,
timestep: int,
latents: torch.FloatTensor,
output_mode: str = "scale",
):
if self.vel is None: self.vel = grads
if hasattr(self.scheduler, 'sigmas'):
step_index = (self.scheduler.timesteps == timestep).nonzero().item()
sigma = self.scheduler.sigmas[step_index]
sigma_next = self.scheduler.sigmas[step_index + 1]
del_g = sigma_next - sigma
update_val = self._step_with_momentum(grads)
return latents + del_g * update_val
elif isinstance(self.scheduler, DPMSolverMultistepScheduler):
step_index = (self.scheduler.timesteps == timestep).nonzero().item()
current_timestep = self.scheduler.timesteps[step_index]
prev_timestep = 0 if step_index == len(self.scheduler.timesteps) - 1 else self.scheduler.timesteps[step_index + 1]
alpha_prod_t = self.scheduler.alphas_cumprod[current_timestep]
alpha_bar_prev = self.scheduler.alphas_cumprod[prev_timestep]
s0 = torch.sqrt(alpha_prod_t)
s_1 = torch.sqrt(alpha_bar_prev)
g0 = torch.sqrt(1-alpha_prod_t)/s0
g_1 = torch.sqrt(1-alpha_bar_prev)/s_1
del_g = g_1 - g0
update_val = self._step_with_momentum(grads)
if output_mode in ["scale"]:
return (latents/s0 + del_g * update_val) * s_1
elif output_mode in ["back"]:
return latents + del_g * update_val * s_1
elif output_mode in ["front"]:
return latents + del_g * update_val * s0
else:
return latents + del_g * update_val
else:
raise NotImplementedError
class GHVBScheduler(PLMSWithHBScheduler):
"""
Generalizing Polyak's Heavy Bal (GHVB) for diffusion ODEs.
We implement it as a wrapper for schedulers in diffusers (https://github.com/huggingface/diffusers)
When order is an integer, this method is equivalent to PLMS without momentum.
"""
def _step_with_momentum(self, grads):
self.vel = (1 - self.beta) * self.vel + self.beta * grads
self.update_ets(self.vel)
prime = self.mixer(self.order, self.ets, self.beta)
return prime
class PLMSWithNTScheduler(PLMSWithHBScheduler):
"""
PLMS with Nesterov Momentum (NT) for diffusion ODEs.
We implement it as a wrapper for schedulers in diffusers (https://github.com/huggingface/diffusers)
When order is an integer, this method is equivalent to PLMS without momentum.
"""
def _step_with_momentum(self, grads):
self.update_ets(grads)
prime = self.mixer(self.order, self.ets, 1.0) # update v^{(2)}
self.vel = (1 - self.beta) * self.vel + self.beta * prime # update v^{(1)}
update_val = (1 - self.beta) * self.vel + self.beta * prime # update x
return update_val
class MomentumDPMSolverMultistepScheduler(DPMSolverMultistepScheduler):
"""
DPM-Solver++2M with HB momentum.
Currently support only algorithm_type = "dpmsolver++" and solver_type = "midpoint"
When beta = 1.0, this method is equivalent to DPM-Solver++2M without momentum.
"""
def initialize_momentum(self, beta):
self.vel = None
self.beta = beta
def multistep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.FloatTensor],
timestep_list: List[int],
prev_timestep: int,
sample: torch.FloatTensor,
) -> torch.FloatTensor:
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2]
m0, m1 = model_output_list[-1], model_output_list[-2]
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
if self.config.algorithm_type == "dpmsolver++":
# See https://arxiv.org/abs/2211.01095 for detailed derivations
if self.config.solver_type == "midpoint":
diff = (D0 + 0.5 * D1)
if self.vel is None:
self.vel = diff
else:
self.vel = (1-self.beta)*self.vel + self.beta * diff
x_t = (
(sigma_t / sigma_s0) * sample
- (alpha_t * (torch.exp(-h) - 1.0)) * self.vel
)
elif self.config.solver_type == "heun":
raise NotImplementedError(
"{self.config.algorithm_type} with {self.config.solver_type} is currently not supported."
)
elif self.config.algorithm_type == "dpmsolver":
# See https://arxiv.org/abs/2206.00927 for detailed derivations
if self.config.solver_type == "midpoint":
raise NotImplementedError(
"{self.config.algorithm_type} with {self.config.solver_type} is currently not supported."
)
elif self.config.solver_type == "heun":
raise NotImplementedError(
"{self.config.algorithm_type} with {self.config.solver_type} is currently not supported."
)
return x_t
class MomentumUniPCMultistepScheduler(UniPCMultistepScheduler):
"""
UniPC with HB momentum.
Currently support only self.predict_x0 = True
When beta = 1.0, this method is equivalent to UniPC without momentum.
"""
def initialize_momentum(self, beta):
self.vel_p = None
self.vel_c = None
self.beta = beta
def multistep_uni_p_bh_update(
self,
model_output: torch.FloatTensor,
prev_timestep: int,
sample: torch.FloatTensor,
order: int,
) -> torch.FloatTensor:
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = self.timestep_list[-1], prev_timestep
m0 = model_output_list[-1]
x = sample
if self.solver_p:
x_t = self.solver_p.step(model_output, s0, x).prev_sample
return x_t
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
device = sample.device
rks = []
D1s = []
for i in range(1, order):
si = timestep_list[-(i + 1)]
mi = model_output_list[-(i + 1)]
lambda_si = self.lambda_t[si]
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk)
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if self.predict_x0:
if D1s is not None:
pred_res = torch.einsum("k,bkchw->bchw", rhos_p, D1s)
else:
pred_res = 0
val = ( h_phi_1 * m0 + B_h * pred_res ) /sigma_t /h_phi_1
if self.vel_p is None:
self.vel_p = val
else:
self.vel_p = (1-self.beta)*self.vel_p + self.beta * val
self.vel_p = val
x_t = sigma_t * (x/ sigma_s0 - alpha_t * self.vel_p * h_phi_1)
else:
raise NotImplementedError
x_t = x_t.to(x.dtype)
return x_t
def multistep_uni_c_bh_update(
self,
this_model_output: torch.FloatTensor,
this_timestep: int,
last_sample: torch.FloatTensor,
this_sample: torch.FloatTensor,
order: int,
) -> torch.FloatTensor:
timestep_list = self.timestep_list
model_output_list = self.model_outputs
s0, t = timestep_list[-1], this_timestep
m0 = model_output_list[-1]
x = last_sample
x_t = this_sample
model_t = this_model_output
lambda_t, lambda_s0 = self.lambda_t[t], self.lambda_t[s0]
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0]
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0]
h = lambda_t - lambda_s0
device = this_sample.device
rks = []
D1s = []
for i in range(1, order):
si = timestep_list[-(i + 1)]
mi = model_output_list[-(i + 1)]
lambda_si = self.lambda_t[si]
rk = (lambda_si - lambda_s0) / h
rks.append(rk)
D1s.append((mi - m0) / rk)
rks.append(1.0)
rks = torch.tensor(rks, device=device)
R = []
b = []
hh = -h if self.predict_x0 else h
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if self.config.solver_type == "bh1":
B_h = hh
elif self.config.solver_type == "bh2":
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= i + 1
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=device)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1)
else:
D1s = None
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
else:
rhos_c = torch.linalg.solve(R, b)
if self.predict_x0:
if D1s is not None:
corr_res = torch.einsum("k,bkchw->bchw", rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = model_t - m0
val = (h_phi_1 * m0 + B_h * (corr_res + rhos_c[-1] * D1_t))/sigma_t/h_phi_1
if self.vel_c is None:
self.vel_c = val
else:
self.vel_c = (1-self.beta)*self.vel_c + self.beta * val
x_t = sigma_t * (x/ sigma_s0 - alpha_t * self.vel_c * h_phi_1)
else:
raise NotImplementedError
x_t = x_t.to(x.dtype)
return x_t |