Spaces:
Runtime error
Runtime error
# app.py | |
import gradio as gr | |
from transformers import pipeline, AutoModel, AutoProcessor | |
import torch | |
import os | |
import numpy as np | |
from PIL import Image | |
# Initialize models (outside process function) | |
summarizer = pipeline("summarization", "csebuetnlp/mT5_multilingual_XLSum") | |
translator_ar2en = pipeline("translation_ar_to_en", "Helsinki-NLP/opus-mt-ar-en") | |
clip_model = AutoModel.from_pretrained("openai/clip-vit-base-patch32") | |
clip_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Image preprocessing | |
def precompute_embeddings(image_dir="images"): | |
image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) | |
if f.lower().endswith(('.png', '.jpg', '.jpeg'))] | |
embeddings = [] | |
for path in image_paths: | |
image = Image.open(path) | |
inputs = clip_processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
embeddings.append(clip_model.get_image_features(**inputs)) | |
return image_paths, torch.cat(embeddings) | |
image_paths, image_embeddings = precompute_embeddings() | |
def process(input_text, language): | |
# Text summarization | |
summary = summarizer(input_text, max_length=150, min_length=30)[0]['summary_text'] | |
# Translation if Arabic | |
if language == "Arabic": | |
translated = translator_ar2en(summary)[0]['translation_text'] | |
query_text = translated | |
else: | |
query_text = summary | |
# Text-image retrieval | |
text_inputs = clip_processor( | |
text=query_text, | |
return_tensors="pt", | |
padding=True, | |
truncation=True | |
) | |
with torch.no_grad(): | |
text_emb = clip_model.get_text_features(**text_inputs) | |
similarities = (text_emb @ image_embeddings.T).softmax(dim=-1) | |
top_indices = similarities.topk(3).indices.numpy() | |
results = [image_paths[i] for i in top_indices] | |
return summary, translated if language == "Arabic" else "", results | |
# Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π Multi-Task AI: Summarization & Image Retrieval") | |
with gr.Row(): | |
lang = gr.Dropdown(["English", "Arabic"], label="Input Language") | |
text_input = gr.Textbox(label="Input Text", lines=5) | |
with gr.Row(): | |
summary_out = gr.Textbox(label="Summary") | |
trans_out = gr.Textbox(label="English Query Text", visible=False) | |
gallery = gr.Gallery(label="Retrieved Images", columns=3) | |
submit = gr.Button("Process", variant="primary") | |
def toggle_translation(lang): | |
return gr.update(visible=lang == "Arabic") | |
lang.change(toggle_translation, lang, trans_out) | |
submit.click(process, [text_input, lang], [summary_out, trans_out, gallery]) | |
demo.launch() | |