Spaces:
Sleeping
Sleeping
File size: 1,704 Bytes
07e0380 fc31cc8 07e0380 fc31cc8 07e0380 fc31cc8 64b7228 ae02fae 07e0380 ae02fae 07e0380 fc31cc8 07e0380 fc31cc8 07e0380 fc31cc8 64b7228 07e0380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import gradio as gr
from transformers import pipeline
def analyze_sentiment(text):
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="nlptown/bert-base-multilingual-uncased-sentiment"
)
result = sentiment_analyzer(text, return_all_scores=True)
score = int(result[0]['score'] * 5)
sentiment_stars = "⭐" * score
return sentiment_stars
with gr.Blocks() as demo:
gr.Markdown("## Sentiment Analysis Demo")
with gr.Row():
examples_dropdown = gr.Dropdown(
label="Click to load example texts",
choices=[
"I love this product! It's amazing!",
"This was the worst experience I've ever had.",
"The movie was okay, not great but not bad either.",
"Absolutely fantastic! I would recommend it to everyone."
],
interactive=True
)
def load_example(selected_example):
return selected_example
with gr.Row():
input_text = gr.Textbox(
label="Enter your text here",
placeholder="Type or paste your text...",
lines=3
)
with gr.Row():
analyze_button = gr.Button("Analyze Sentiment", variant="primary")
with gr.Row():
output_text = gr.Textbox(
label="Sentiment (Stars)",
lines=1
)
examples_dropdown.change(
fn=load_example,
inputs=examples_dropdown,
outputs=input_text
)
analyze_button.click(
fn=analyze_sentiment,
inputs=input_text,
outputs=output_text
)
if __name__ == "__main__":
demo.launch() |