Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,36 +4,34 @@ from bs4 import BeautifulSoup
|
|
4 |
import os
|
5 |
import re
|
6 |
import random
|
7 |
-
from dotenv import load_dotenv
|
8 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
9 |
import torch
|
10 |
import gradio as gr
|
11 |
import time
|
12 |
|
13 |
-
# Opt-in to future pandas behavior to potentially silence the downcasting warning
|
14 |
-
# pd.set_option('future.no_silent_downcasting', True) # You can uncomment this if you wish
|
15 |
-
|
16 |
# --- Configuration ---
|
17 |
-
load_dotenv()
|
18 |
-
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
#
|
22 |
-
MODEL_NAME = "ALLaM-AI/ALLaM-7B-Instruct-preview"
|
23 |
|
24 |
BASE_TMDB_URL = "https://api.themoviedb.org/3"
|
25 |
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500"
|
26 |
NUM_RECOMMENDATIONS_TO_DISPLAY = 5
|
27 |
MIN_RATING_FOR_SEED = 3.5
|
28 |
-
MIN_VOTE_COUNT_TMDB = 100
|
29 |
|
30 |
-
# --- Global Variables ---
|
31 |
df_profile_global = None
|
32 |
df_watchlist_global = None
|
33 |
df_reviews_global = None
|
34 |
df_diary_global = None
|
35 |
df_ratings_global = None
|
36 |
-
df_watched_global = None
|
37 |
|
38 |
uri_to_movie_map_global = {}
|
39 |
all_watched_titles_global = set()
|
@@ -48,7 +46,7 @@ llm_tokenizer = None
|
|
48 |
def clean_html(raw_html):
|
49 |
if pd.isna(raw_html) or raw_html is None: return ""
|
50 |
text = str(raw_html)
|
51 |
-
text = re.sub(r'<br\s*/?>', '\n', text)
|
52 |
soup = BeautifulSoup(text, "html.parser")
|
53 |
return soup.get_text(separator=" ", strip=True)
|
54 |
|
@@ -67,7 +65,9 @@ def get_movie_uri_map(dfs_dict):
|
|
67 |
year = int(row['Year'])
|
68 |
uri_map[uri] = (str(row['Name']), year)
|
69 |
processed_uris.add(uri)
|
70 |
-
except ValueError:
|
|
|
|
|
71 |
return uri_map
|
72 |
|
73 |
def load_all_data():
|
@@ -76,15 +76,17 @@ def load_all_data():
|
|
76 |
global watchlist_titles_global, favorite_film_details_global, seed_movies_global
|
77 |
|
78 |
try:
|
|
|
79 |
df_profile_global = pd.read_csv("profile.csv")
|
|
|
80 |
df_watchlist_global = pd.read_csv("watchlist.csv")
|
81 |
df_reviews_global = pd.read_csv("reviews.csv")
|
82 |
df_diary_global = pd.read_csv("diary.csv")
|
83 |
df_ratings_global = pd.read_csv("ratings.csv")
|
84 |
-
_df_watched_log = pd.read_csv("watched.csv")
|
85 |
except FileNotFoundError as e:
|
86 |
-
print(f"ERROR: CSV file not found: {e}.")
|
87 |
-
return False
|
88 |
|
89 |
dfs_for_uri_map = {
|
90 |
"reviews.csv": df_reviews_global, "diary.csv": df_diary_global,
|
@@ -114,17 +116,14 @@ def load_all_data():
|
|
114 |
consolidated.drop(columns=['Rating_simple'], inplace=True)
|
115 |
|
116 |
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy()
|
117 |
-
watched_log_subset['from_watched_log'] = True
|
118 |
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer')
|
119 |
-
|
120 |
-
# Address the FutureWarning directly or use pd.set_option
|
121 |
-
# This ensures 'from_watched_log' becomes boolean after fillna
|
122 |
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False).astype(bool)
|
123 |
|
124 |
|
125 |
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html)
|
126 |
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64')
|
127 |
-
consolidated.dropna(subset=['Name', 'Year'], inplace=True)
|
128 |
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True)
|
129 |
df_watched_global = consolidated
|
130 |
|
@@ -142,7 +141,7 @@ def load_all_data():
|
|
142 |
except ValueError: pass
|
143 |
|
144 |
favorite_film_details_global = []
|
145 |
-
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns:
|
146 |
fav_uris_str = df_profile_global.iloc[0]['Favorite Films']
|
147 |
if pd.notna(fav_uris_str):
|
148 |
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')]
|
@@ -155,61 +154,76 @@ def load_all_data():
|
|
155 |
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri})
|
156 |
|
157 |
seed_movies_global.extend(favorite_film_details_global)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
if
|
168 |
-
temp_df
|
169 |
-
|
|
|
|
|
170 |
else:
|
171 |
-
seed_movies_global = []
|
172 |
|
173 |
random.shuffle(seed_movies_global)
|
174 |
return True
|
175 |
|
176 |
def initialize_llm():
|
177 |
global llm_pipeline, llm_tokenizer
|
178 |
-
if llm_pipeline is None:
|
179 |
-
print(f"
|
180 |
if not HF_TOKEN:
|
181 |
-
print("
|
182 |
-
#
|
183 |
-
# or let it try and fail, as it currently does.
|
184 |
-
# return # uncomment to stop here if no token
|
185 |
|
186 |
try:
|
187 |
-
llm_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
model = AutoModelForCausalLM.from_pretrained(
|
189 |
MODEL_NAME,
|
190 |
torch_dtype=torch.float16,
|
191 |
-
device_map="auto",
|
192 |
-
load_in_8bit=True,
|
193 |
trust_remote_code=True,
|
194 |
token=HF_TOKEN
|
195 |
)
|
|
|
|
|
196 |
if llm_tokenizer.pad_token is None:
|
|
|
197 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
198 |
-
model.config.pad_token_id
|
|
|
|
|
199 |
|
200 |
llm_pipeline = pipeline(
|
201 |
-
"text-generation",
|
|
|
|
|
202 |
)
|
203 |
-
print(f"LLM
|
204 |
except Exception as e:
|
205 |
-
print(f"
|
|
|
206 |
llm_pipeline = None
|
207 |
-
|
208 |
|
209 |
# --- TMDB API Functions ---
|
210 |
def search_tmdb_movie_details(title, year):
|
211 |
-
if not TMDB_API_KEY
|
212 |
-
print("
|
213 |
return None
|
214 |
try:
|
215 |
search_url = f"{BASE_TMDB_URL}/search/movie"
|
@@ -232,14 +246,14 @@ def search_tmdb_movie_details(title, year):
|
|
232 |
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'),
|
233 |
'popularity': movie.get('popularity')
|
234 |
}
|
235 |
-
time.sleep(0.
|
236 |
-
except requests.RequestException as e: print(f"Error
|
237 |
-
except Exception as ex: print(f"Unexpected error in
|
238 |
return None
|
239 |
|
240 |
def get_tmdb_recommendations(movie_id, page=1):
|
241 |
-
if not TMDB_API_KEY
|
242 |
-
print("
|
243 |
return []
|
244 |
recommendations = []
|
245 |
try:
|
@@ -258,21 +272,23 @@ def get_tmdb_recommendations(movie_id, page=1):
|
|
258 |
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'),
|
259 |
'popularity': movie.get('popularity')
|
260 |
})
|
261 |
-
time.sleep(0.
|
262 |
-
except requests.RequestException as e: print(f"
|
263 |
-
except Exception as ex: print(f"Unexpected error in
|
264 |
return recommendations
|
265 |
|
266 |
# --- LLM Explanation ---
|
267 |
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""):
|
268 |
global llm_pipeline, llm_tokenizer
|
269 |
if llm_pipeline is None or llm_tokenizer is None:
|
270 |
-
|
|
|
271 |
|
272 |
max_context_len = 150
|
273 |
seed_movie_context_short = (seed_movie_context[:max_context_len] + "...") if len(seed_movie_context) > max_context_len else seed_movie_context
|
274 |
|
275 |
-
#
|
|
|
276 |
prompt_template = f"""<s>[INST] أنت ناقد أفلام سعودي خبير ودمك خفيف جداً. مهمتك هي كتابة توصية لفيلم جديد بناءً على فيلم سابق أعجب المستخدم.
|
277 |
المستخدم أعجب بالفيلم هذا: "{seed_movie_title}".
|
278 |
وكان تعليقه أو سبب إعجابه (إذا متوفر): "{seed_movie_context_short}"
|
@@ -293,7 +309,7 @@ def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_m
|
|
293 |
prompt_template, do_sample=True, top_k=20, top_p=0.9, num_return_sequences=1,
|
294 |
eos_token_id=llm_tokenizer.eos_token_id,
|
295 |
pad_token_id=llm_tokenizer.pad_token_id if llm_tokenizer.pad_token_id is not None else llm_tokenizer.eos_token_id,
|
296 |
-
max_new_tokens=
|
297 |
)
|
298 |
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip()
|
299 |
explanation = explanation.replace("<s>", "").replace("</s>", "").strip()
|
@@ -301,50 +317,61 @@ def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_m
|
|
301 |
explanation = re.sub(r"كنموذج لغوي.*?\s*,?\s*", "", explanation, flags=re.IGNORECASE)
|
302 |
|
303 |
if not explanation or explanation.lower().startswith("أنت ناقد أفلام") or len(explanation) < 20 :
|
|
|
304 |
return f"شكلك بتنبسط ع��ى فيلم '{recommended_movie_title}' لأنه يشبه جو فيلم '{seed_movie_title}' اللي حبيته! عطيه تجربة."
|
305 |
return explanation
|
306 |
except Exception as e:
|
307 |
-
print(f"
|
308 |
return f"يا كابتن، شكلك بتحب '{recommended_movie_title}'، خاصة إنك استمتعت بـ'{seed_movie_title}'. جربه وعطنا رأيك!"
|
309 |
|
310 |
# --- Recommendation Logic ---
|
311 |
-
def get_recommendations(progress=gr.Progress()):
|
312 |
-
if not TMDB_API_KEY or (TMDB_API_KEY == "442a13f1865d8936f95aa20737e6f6f5" and not os.environ.get("TMDB_API_KEY")):
|
313 |
-
print("Warning: Using fallback TMDB API Key.")
|
314 |
if not TMDB_API_KEY:
|
315 |
-
return "<p style='color:red; text-align:right;'>خطأ: مفتاح TMDB API مو
|
316 |
-
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global]):
|
317 |
-
return "<p style='color:red; text-align:right;'>خطأ: فشل في تحميل بيانات
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
|
|
|
|
324 |
|
325 |
progress(0.1, desc="نجمع أفلامك المفضلة...")
|
326 |
potential_recs = {}
|
327 |
-
|
|
|
328 |
|
329 |
for i, seed_movie in enumerate(seeds_to_process):
|
330 |
-
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"نبحث عن توصيات بناءً على: {seed_movie
|
331 |
-
seed_tmdb_details = search_tmdb_movie_details(seed_movie
|
332 |
if seed_tmdb_details and seed_tmdb_details.get('id'):
|
333 |
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id'])
|
334 |
for rec in tmdb_recs:
|
335 |
try:
|
336 |
-
|
|
|
|
|
|
|
|
|
337 |
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global:
|
338 |
-
if rec['id'] not in potential_recs:
|
339 |
potential_recs[rec['id']] = {
|
340 |
-
'movie_info': rec,
|
|
|
341 |
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '')
|
342 |
}
|
343 |
-
except (ValueError, TypeError)
|
|
|
|
|
344 |
if not potential_recs:
|
345 |
-
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك
|
346 |
|
|
|
347 |
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True)
|
|
|
348 |
final_recommendations_data = []
|
349 |
displayed_ids = set()
|
350 |
for rec_data in sorted_recs_list:
|
@@ -352,74 +379,93 @@ def get_recommendations(progress=gr.Progress()):
|
|
352 |
if rec_data['movie_info']['id'] not in displayed_ids:
|
353 |
final_recommendations_data.append(rec_data)
|
354 |
displayed_ids.add(rec_data['movie_info']['id'])
|
|
|
355 |
if not final_recommendations_data:
|
356 |
-
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بعد الفلترة. 😉</p>"
|
357 |
|
358 |
-
output_html = "<div>"
|
359 |
progress(0.6, desc="نجهز لك الشرح باللغة العامية...")
|
|
|
360 |
for i, rec_data in enumerate(final_recommendations_data):
|
361 |
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"نكتب شرح لفيلم: {rec_data['movie_info']['title']}")
|
362 |
explanation = generate_saudi_explanation(
|
363 |
rec_data['movie_info']['title'], rec_data['seed_movie_title'], rec_data['seed_movie_context']
|
364 |
)
|
365 |
poster_url = rec_data['movie_info']['poster_path']
|
366 |
-
|
367 |
-
|
|
|
|
|
368 |
output_html += f"""
|
369 |
-
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px;">
|
370 |
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);">
|
371 |
<div style="text-align: right; direction: rtl; flex-grow: 1;">
|
372 |
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3>
|
373 |
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p>
|
374 |
-
<p style="font-size: 0.9em; color: #
|
375 |
</div>
|
376 |
</div>"""
|
377 |
output_html += "</div>"
|
378 |
return gr.HTML(output_html)
|
379 |
|
380 |
# --- Gradio Interface ---
|
381 |
-
|
382 |
body { font-family: 'Tajawal', sans-serif; }
|
383 |
-
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; }
|
384 |
footer { display: none !important; }
|
385 |
-
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding:
|
386 |
-
.gr-button:hover { background-color: #a3002f !important; }
|
387 |
-
h1
|
388 |
-
|
|
|
389 |
|
|
|
390 |
data_loaded_successfully = load_all_data()
|
391 |
if data_loaded_successfully:
|
392 |
-
print("
|
393 |
-
# LLM will be
|
|
|
|
|
394 |
else:
|
395 |
-
print("Failed to load user data.
|
396 |
|
397 |
-
|
|
|
|
|
|
|
|
|
398 |
gr.Markdown(
|
399 |
"""
|
400 |
-
<div style="text-align: center;">
|
401 |
-
<h1 style="color: #c70039; font-size: 2.
|
402 |
<p style="font-size: 1.2em; color: #555;">يا هلا بك! اضغط الزر تحت وخلنا نعطيك توصيات أفلام على كيف كيفك، مع شرح بالعامية ليش ممكن تدخل مزاجك.</p>
|
403 |
</div>"""
|
404 |
)
|
405 |
-
recommend_button = gr.Button("عطني توصيات
|
406 |
-
|
407 |
-
|
|
|
408 |
|
409 |
-
#
|
410 |
-
# This way, it tries to load the LLM when the app starts, not just on the first click.
|
411 |
if data_loaded_successfully:
|
412 |
-
initialize_llm()
|
413 |
|
414 |
-
recommend_button.click(fn=get_recommendations, inputs=
|
|
|
415 |
gr.Markdown(
|
416 |
"""
|
417 |
-
<div style="text-align: center; margin-top:
|
418 |
-
<p
|
419 |
</div>"""
|
420 |
)
|
421 |
|
422 |
if __name__ == "__main__":
|
423 |
-
|
424 |
-
|
425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
import re
|
6 |
import random
|
7 |
+
from dotenv import load_dotenv # For local testing with a .env file
|
8 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
9 |
import torch
|
10 |
import gradio as gr
|
11 |
import time
|
12 |
|
|
|
|
|
|
|
13 |
# --- Configuration ---
|
14 |
+
load_dotenv() # Loads HF_TOKEN and TMDB_API_KEY from .env for local testing
|
15 |
+
|
16 |
+
# SECRETS - These will be read from Hugging Face Space Secrets when deployed
|
17 |
+
TMDB_API_KEY = os.environ.get("TMDB_API_KEY")
|
18 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") # Essential for gated models like ALLaM
|
19 |
|
20 |
+
MODEL_NAME = "ALLaM-AI/ALLaM-7B-Instruct-preview" # Target ALLaM model
|
|
|
21 |
|
22 |
BASE_TMDB_URL = "https://api.themoviedb.org/3"
|
23 |
POSTER_BASE_URL = "https://image.tmdb.org/t/p/w500"
|
24 |
NUM_RECOMMENDATIONS_TO_DISPLAY = 5
|
25 |
MIN_RATING_FOR_SEED = 3.5
|
26 |
+
MIN_VOTE_COUNT_TMDB = 100 # Minimum votes on TMDB for a movie to be considered
|
27 |
|
28 |
+
# --- Global Variables for Data & Model (Load once) ---
|
29 |
df_profile_global = None
|
30 |
df_watchlist_global = None
|
31 |
df_reviews_global = None
|
32 |
df_diary_global = None
|
33 |
df_ratings_global = None
|
34 |
+
df_watched_global = None # This will be a consolidated df
|
35 |
|
36 |
uri_to_movie_map_global = {}
|
37 |
all_watched_titles_global = set()
|
|
|
46 |
def clean_html(raw_html):
|
47 |
if pd.isna(raw_html) or raw_html is None: return ""
|
48 |
text = str(raw_html)
|
49 |
+
text = re.sub(r'<br\s*/?>', '\n', text) # Convert <br> to newlines
|
50 |
soup = BeautifulSoup(text, "html.parser")
|
51 |
return soup.get_text(separator=" ", strip=True)
|
52 |
|
|
|
65 |
year = int(row['Year'])
|
66 |
uri_map[uri] = (str(row['Name']), year)
|
67 |
processed_uris.add(uri)
|
68 |
+
except ValueError:
|
69 |
+
# Silently skip if year is not a valid integer for URI mapping
|
70 |
+
pass
|
71 |
return uri_map
|
72 |
|
73 |
def load_all_data():
|
|
|
76 |
global watchlist_titles_global, favorite_film_details_global, seed_movies_global
|
77 |
|
78 |
try:
|
79 |
+
# Assumes CSV files are in the root of the Hugging Face Space
|
80 |
df_profile_global = pd.read_csv("profile.csv")
|
81 |
+
# df_comments_global = pd.read_csv("comments.csv") # Not directly used in recs logic
|
82 |
df_watchlist_global = pd.read_csv("watchlist.csv")
|
83 |
df_reviews_global = pd.read_csv("reviews.csv")
|
84 |
df_diary_global = pd.read_csv("diary.csv")
|
85 |
df_ratings_global = pd.read_csv("ratings.csv")
|
86 |
+
_df_watched_log = pd.read_csv("watched.csv") # Raw log of watched films
|
87 |
except FileNotFoundError as e:
|
88 |
+
print(f"CRITICAL ERROR: CSV file not found: {e}. Ensure all CSVs are uploaded to the HF Space root.")
|
89 |
+
return False # Indicate failure to load data
|
90 |
|
91 |
dfs_for_uri_map = {
|
92 |
"reviews.csv": df_reviews_global, "diary.csv": df_diary_global,
|
|
|
116 |
consolidated.drop(columns=['Rating_simple'], inplace=True)
|
117 |
|
118 |
watched_log_subset = _df_watched_log[['Letterboxd URI', 'Name', 'Year']].copy()
|
119 |
+
watched_log_subset['from_watched_log'] = True
|
120 |
consolidated = pd.merge(consolidated, watched_log_subset, on=['Letterboxd URI', 'Name', 'Year'], how='outer')
|
|
|
|
|
|
|
121 |
consolidated['from_watched_log'] = consolidated['from_watched_log'].fillna(False).astype(bool)
|
122 |
|
123 |
|
124 |
consolidated['Review Text'] = consolidated['Review Text'].fillna('').apply(clean_html)
|
125 |
consolidated['Year'] = pd.to_numeric(consolidated['Year'], errors='coerce').astype('Int64')
|
126 |
+
consolidated.dropna(subset=['Name', 'Year'], inplace=True) # Ensure essential fields are present
|
127 |
consolidated.drop_duplicates(subset=['Name', 'Year'], keep='first', inplace=True)
|
128 |
df_watched_global = consolidated
|
129 |
|
|
|
141 |
except ValueError: pass
|
142 |
|
143 |
favorite_film_details_global = []
|
144 |
+
if df_profile_global is not None and 'Favorite Films' in df_profile_global.columns and not df_profile_global.empty:
|
145 |
fav_uris_str = df_profile_global.iloc[0]['Favorite Films']
|
146 |
if pd.notna(fav_uris_str):
|
147 |
fav_uris = [uri.strip() for uri in fav_uris_str.split(',')]
|
|
|
154 |
favorite_film_details_global.append({'name': name, 'year': year, 'rating': rating, 'review_text': review, 'uri': uri})
|
155 |
|
156 |
seed_movies_global.extend(favorite_film_details_global)
|
157 |
+
if not df_watched_global.empty: # Ensure df_watched_global is not empty
|
158 |
+
highly_rated_df = df_watched_global[df_watched_global['Rating'] >= MIN_RATING_FOR_SEED]
|
159 |
+
favorite_uris = {fav['uri'] for fav in favorite_film_details_global if 'uri' in fav}
|
160 |
+
for _, row in highly_rated_df.iterrows():
|
161 |
+
if row['Letterboxd URI'] not in favorite_uris:
|
162 |
+
seed_movies_global.append({
|
163 |
+
'name': row['Name'], 'year': row['Year'], 'rating': row['Rating'],
|
164 |
+
'review_text': row['Review Text'], 'uri': row['Letterboxd URI']
|
165 |
+
})
|
166 |
+
if seed_movies_global: # Only process if seed_movies_global is not empty
|
167 |
+
temp_df = pd.DataFrame(seed_movies_global)
|
168 |
+
if not temp_df.empty:
|
169 |
+
temp_df.drop_duplicates(subset=['name', 'year'], keep='first', inplace=True)
|
170 |
+
seed_movies_global = temp_df.to_dict('records')
|
171 |
else:
|
172 |
+
seed_movies_global = []
|
173 |
|
174 |
random.shuffle(seed_movies_global)
|
175 |
return True
|
176 |
|
177 |
def initialize_llm():
|
178 |
global llm_pipeline, llm_tokenizer
|
179 |
+
if llm_pipeline is None: # Proceed only if pipeline is not already initialized
|
180 |
+
print(f"Attempting to initialize LLM: {MODEL_NAME}")
|
181 |
if not HF_TOKEN:
|
182 |
+
print("CRITICAL ERROR: HF_TOKEN environment variable not set. Cannot access gated model.")
|
183 |
+
return # Stop initialization if token is missing
|
|
|
|
|
184 |
|
185 |
try:
|
186 |
+
llm_tokenizer = AutoTokenizer.from_pretrained(
|
187 |
+
MODEL_NAME,
|
188 |
+
trust_remote_code=True,
|
189 |
+
token=HF_TOKEN,
|
190 |
+
use_fast=False # Using slow tokenizer as per previous debugging for SentencePiece
|
191 |
+
)
|
192 |
+
print(f"Tokenizer for {MODEL_NAME} loaded.")
|
193 |
+
|
194 |
model = AutoModelForCausalLM.from_pretrained(
|
195 |
MODEL_NAME,
|
196 |
torch_dtype=torch.float16,
|
197 |
+
device_map="auto", # Automatically map to available device
|
198 |
+
load_in_8bit=True, # Enable 8-bit quantization; requires bitsandbytes
|
199 |
trust_remote_code=True,
|
200 |
token=HF_TOKEN
|
201 |
)
|
202 |
+
print(f"Model {MODEL_NAME} loaded.")
|
203 |
+
|
204 |
if llm_tokenizer.pad_token is None:
|
205 |
+
print("Tokenizer pad_token is None, setting to eos_token.")
|
206 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
207 |
+
if model.config.pad_token_id is None: # Also update model config if needed
|
208 |
+
model.config.pad_token_id = model.config.eos_token_id
|
209 |
+
print(f"Model config pad_token_id set to: {model.config.pad_token_id}")
|
210 |
|
211 |
llm_pipeline = pipeline(
|
212 |
+
"text-generation",
|
213 |
+
model=model,
|
214 |
+
tokenizer=llm_tokenizer
|
215 |
)
|
216 |
+
print(f"LLM pipeline for {MODEL_NAME} initialized successfully.")
|
217 |
except Exception as e:
|
218 |
+
print(f"ERROR during LLM initialization ({MODEL_NAME}): {e}")
|
219 |
+
# Ensure these are reset if initialization fails partway
|
220 |
llm_pipeline = None
|
221 |
+
llm_tokenizer = None
|
222 |
|
223 |
# --- TMDB API Functions ---
|
224 |
def search_tmdb_movie_details(title, year):
|
225 |
+
if not TMDB_API_KEY:
|
226 |
+
print("CRITICAL ERROR: TMDB_API_KEY not configured.")
|
227 |
return None
|
228 |
try:
|
229 |
search_url = f"{BASE_TMDB_URL}/search/movie"
|
|
|
246 |
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'),
|
247 |
'popularity': movie.get('popularity')
|
248 |
}
|
249 |
+
time.sleep(0.3) # Slightly increased delay for API calls
|
250 |
+
except requests.RequestException as e: print(f"TMDB API Error (search) for {title} ({year}): {e}")
|
251 |
+
except Exception as ex: print(f"Unexpected error in TMDB search for {title} ({year}): {ex}")
|
252 |
return None
|
253 |
|
254 |
def get_tmdb_recommendations(movie_id, page=1):
|
255 |
+
if not TMDB_API_KEY:
|
256 |
+
print("CRITICAL ERROR: TMDB_API_KEY not configured.")
|
257 |
return []
|
258 |
recommendations = []
|
259 |
try:
|
|
|
272 |
'vote_average': movie.get('vote_average'), 'vote_count': movie.get('vote_count'),
|
273 |
'popularity': movie.get('popularity')
|
274 |
})
|
275 |
+
time.sleep(0.3) # Slightly increased delay
|
276 |
+
except requests.RequestException as e: print(f"TMDB API Error (recommendations) for movie ID {movie_id}: {e}")
|
277 |
+
except Exception as ex: print(f"Unexpected error in TMDB recommendations for movie ID {movie_id}: {ex}")
|
278 |
return recommendations
|
279 |
|
280 |
# --- LLM Explanation ---
|
281 |
def generate_saudi_explanation(recommended_movie_title, seed_movie_title, seed_movie_context=""):
|
282 |
global llm_pipeline, llm_tokenizer
|
283 |
if llm_pipeline is None or llm_tokenizer is None:
|
284 |
+
print("LLM pipeline or tokenizer not available for explanation generation.")
|
285 |
+
return "للأسف، نموذج الذكاء الاصطناعي مو جاهز حالياً. حاول مرة ثانية بعد شوي."
|
286 |
|
287 |
max_context_len = 150
|
288 |
seed_movie_context_short = (seed_movie_context[:max_context_len] + "...") if len(seed_movie_context) > max_context_len else seed_movie_context
|
289 |
|
290 |
+
# Assuming ALLaM-Instruct uses a Llama-like prompt format.
|
291 |
+
# ALWAYS verify this on the model card for `ALLaM-AI/ALLaM-7B-Instruct-preview`.
|
292 |
prompt_template = f"""<s>[INST] أنت ناقد أفلام سعودي خبير ودمك خفيف جداً. مهمتك هي كتابة توصية لفيلم جديد بناءً على فيلم سابق أعجب المستخدم.
|
293 |
المستخدم أعجب بالفيلم هذا: "{seed_movie_title}".
|
294 |
وكان تعليقه أو سبب إعجابه (إذا متوفر): "{seed_movie_context_short}"
|
|
|
309 |
prompt_template, do_sample=True, top_k=20, top_p=0.9, num_return_sequences=1,
|
310 |
eos_token_id=llm_tokenizer.eos_token_id,
|
311 |
pad_token_id=llm_tokenizer.pad_token_id if llm_tokenizer.pad_token_id is not None else llm_tokenizer.eos_token_id,
|
312 |
+
max_new_tokens=160 # Increased slightly more
|
313 |
)
|
314 |
explanation = sequences[0]['generated_text'].split("[/INST]")[-1].strip()
|
315 |
explanation = explanation.replace("<s>", "").replace("</s>", "").strip()
|
|
|
317 |
explanation = re.sub(r"كنموذج لغوي.*?\s*,?\s*", "", explanation, flags=re.IGNORECASE)
|
318 |
|
319 |
if not explanation or explanation.lower().startswith("أنت ناقد أفلام") or len(explanation) < 20 :
|
320 |
+
print(f"LLM explanation for '{recommended_movie_title}' was too short or poor. Falling back.")
|
321 |
return f"شكلك بتنبسط ع��ى فيلم '{recommended_movie_title}' لأنه يشبه جو فيلم '{seed_movie_title}' اللي حبيته! عطيه تجربة."
|
322 |
return explanation
|
323 |
except Exception as e:
|
324 |
+
print(f"ERROR during LLM generation with {MODEL_NAME}: {e}")
|
325 |
return f"يا كابتن، شكلك بتحب '{recommended_movie_title}'، خاصة إنك استمتعت بـ'{seed_movie_title}'. جربه وعطنا رأيك!"
|
326 |
|
327 |
# --- Recommendation Logic ---
|
328 |
+
def get_recommendations(progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
329 |
if not TMDB_API_KEY:
|
330 |
+
return "<p style='color:red; text-align:right;'>خطأ: مفتاح TMDB API مو موجود أو غير صحيح. الرجاء التأكد من إضافته كـ Secret بشكل صحيح في إعدادات الـ Space.</p>"
|
331 |
+
if not all([df_profile_global is not None, df_watched_global is not None, seed_movies_global is not None]): # seed_movies_global can be empty list
|
332 |
+
return "<p style='color:red; text-align:right;'>خطأ: فشل في تحميل بيانات المستخدم. تأكد من رفع ملفات CSV بشكل صحيح.</p>"
|
333 |
|
334 |
+
if llm_pipeline is None: # Ensure LLM is ready
|
335 |
+
initialize_llm() # Try to initialize if it wasn't at startup
|
336 |
+
if llm_pipeline is None:
|
337 |
+
return "<p style='color:red; text-align:right;'>خطأ: فشل في تهيئة نموذج الذكاء الاصطناعي. تأكد من وجود HF_TOKEN صحيح وأن لديك صلاحية الوصول للنموذج المحدد.</p>"
|
338 |
+
|
339 |
+
if not seed_movies_global: # Check if seed_movies list is empty after loading
|
340 |
+
return "<p style='text-align:right;'>ما لقينا أفلام مفضلة أو مقيمة تقييم عالي كفاية عشان نبني عليها توصيات. حاول تقيّم بعض الأفلام!</p>"
|
341 |
|
342 |
progress(0.1, desc="نجمع أفلامك المفضلة...")
|
343 |
potential_recs = {}
|
344 |
+
# Limit number of seeds to process to avoid excessive API calls / long processing
|
345 |
+
seeds_to_process = seed_movies_global[:20] if len(seed_movies_global) > 20 else seed_movies_global
|
346 |
|
347 |
for i, seed_movie in enumerate(seeds_to_process):
|
348 |
+
progress(0.1 + (i / len(seeds_to_process)) * 0.4, desc=f"نبحث عن توصيات بناءً على: {seed_movie.get('name', 'فيلم غير معروف')}")
|
349 |
+
seed_tmdb_details = search_tmdb_movie_details(seed_movie.get('name'), seed_movie.get('year'))
|
350 |
if seed_tmdb_details and seed_tmdb_details.get('id'):
|
351 |
tmdb_recs = get_tmdb_recommendations(seed_tmdb_details['id'])
|
352 |
for rec in tmdb_recs:
|
353 |
try:
|
354 |
+
# Ensure year is a valid integer for tuple creation
|
355 |
+
year_val = int(rec['year']) if rec.get('year') and str(rec['year']).isdigit() else None
|
356 |
+
if year_val is None: continue # Skip if year is invalid
|
357 |
+
|
358 |
+
rec_tuple = (str(rec['title']), year_val)
|
359 |
if rec.get('id') and rec_tuple not in all_watched_titles_global and rec_tuple not in watchlist_titles_global:
|
360 |
+
if rec['id'] not in potential_recs: # Add if new
|
361 |
potential_recs[rec['id']] = {
|
362 |
+
'movie_info': rec,
|
363 |
+
'seed_movie_title': seed_movie.get('name'),
|
364 |
'seed_movie_context': seed_movie.get('review_text', '') or seed_movie.get('comment_text', '')
|
365 |
}
|
366 |
+
except (ValueError, TypeError) as e:
|
367 |
+
# print(f"Skipping recommendation due to data issue: {rec.get('title')} - {e}")
|
368 |
+
continue
|
369 |
if not potential_recs:
|
370 |
+
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بناءً على أفلامك المفضلة. يمكن شفت كل شيء رهيب! 😉</p>"
|
371 |
|
372 |
+
# Sort recommendations by TMDB popularity
|
373 |
sorted_recs_list = sorted(potential_recs.values(), key=lambda x: x['movie_info'].get('popularity', 0), reverse=True)
|
374 |
+
|
375 |
final_recommendations_data = []
|
376 |
displayed_ids = set()
|
377 |
for rec_data in sorted_recs_list:
|
|
|
379 |
if rec_data['movie_info']['id'] not in displayed_ids:
|
380 |
final_recommendations_data.append(rec_data)
|
381 |
displayed_ids.add(rec_data['movie_info']['id'])
|
382 |
+
|
383 |
if not final_recommendations_data:
|
384 |
+
return "<p style='text-align:right;'>ما لقينا توصيات جديدة لك حالياً بعد الفلترة. يمكن شفت كل شيء رهيب! 😉</p>"
|
385 |
|
386 |
+
output_html = "<div style='padding: 10px;'>" # Main container with some padding
|
387 |
progress(0.6, desc="نجهز لك الشرح باللغة العامية...")
|
388 |
+
|
389 |
for i, rec_data in enumerate(final_recommendations_data):
|
390 |
progress(0.6 + (i / len(final_recommendations_data)) * 0.4, desc=f"نكتب شرح لفيلم: {rec_data['movie_info']['title']}")
|
391 |
explanation = generate_saudi_explanation(
|
392 |
rec_data['movie_info']['title'], rec_data['seed_movie_title'], rec_data['seed_movie_context']
|
393 |
)
|
394 |
poster_url = rec_data['movie_info']['poster_path']
|
395 |
+
# Fallback for missing posters
|
396 |
+
if not poster_url or "No+Poster" in poster_url or "placeholder.com" in poster_url :
|
397 |
+
poster_url = f"https://via.placeholder.com/300x450.png?text={requests.utils.quote(rec_data['movie_info']['title'])}"
|
398 |
+
|
399 |
output_html += f"""
|
400 |
+
<div style="display: flex; flex-direction: row-reverse; align-items: flex-start; margin-bottom: 25px; border-bottom: 1px solid #ddd; padding-bottom:15px; background-color: #f9f9f9; border-radius: 8px; padding: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.05);">
|
401 |
<img src="{poster_url}" alt="{rec_data['movie_info']['title']}" style="width: 150px; max-width:30%; height: auto; margin-left: 20px; border-radius: 5px; box-shadow: 2px 2px 5px rgba(0,0,0,0.1);">
|
402 |
<div style="text-align: right; direction: rtl; flex-grow: 1;">
|
403 |
<h3 style="margin-top:0; color: #c70039;">{rec_data['movie_info']['title']} ({rec_data['movie_info']['year']})</h3>
|
404 |
<p style="font-size: 1.1em; color: #333; line-height: 1.6;">{explanation}</p>
|
405 |
+
<p style="font-size: 0.9em; color: #555; margin-top: 10px;"><em><strong style="color:#c70039;">السبب:</strong> حبيّت فيلم <strong style="color:#333;">{rec_data['seed_movie_title']}</strong></em></p>
|
406 |
</div>
|
407 |
</div>"""
|
408 |
output_html += "</div>"
|
409 |
return gr.HTML(output_html)
|
410 |
|
411 |
# --- Gradio Interface ---
|
412 |
+
css_theme = """
|
413 |
body { font-family: 'Tajawal', sans-serif; }
|
414 |
+
.gradio-container { font-family: 'Tajawal', sans-serif !important; direction: rtl; max-width: 900px !important; margin: auto !important; }
|
415 |
footer { display: none !important; }
|
416 |
+
.gr-button { background-color: #c70039 !important; color: white !important; font-size: 1.2em !important; padding: 12px 24px !important; border-radius: 8px !important; font-weight: bold; }
|
417 |
+
.gr-button:hover { background-color: #a3002f !important; box-shadow: 0 2px 5px rgba(0,0,0,0.2); }
|
418 |
+
h1 { color: #900c3f !important; }
|
419 |
+
.gr-html-output h3 { color: #c70039 !important; } /* Style h3 within the HTML output specifically */
|
420 |
+
"""
|
421 |
|
422 |
+
# Attempt to load data and LLM at startup
|
423 |
data_loaded_successfully = load_all_data()
|
424 |
if data_loaded_successfully:
|
425 |
+
print("User data loaded successfully.")
|
426 |
+
# LLM initialization will be attempted when the Gradio app starts,
|
427 |
+
# or on the first click if it failed at startup.
|
428 |
+
# initialize_llm() # Call it here to attempt loading at startup
|
429 |
else:
|
430 |
+
print("CRITICAL: Failed to load user data. App functionality will be limited.")
|
431 |
|
432 |
+
# It's better to initialize LLM once the app blocks are defined,
|
433 |
+
# or trigger it on first use if it's very resource-intensive at startup.
|
434 |
+
# For Spaces, startup initialization is fine.
|
435 |
+
|
436 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="red", secondary_hue="pink", font=[gr.themes.GoogleFont("Tajawal"), "sans-serif"]), css=css_theme) as iface:
|
437 |
gr.Markdown(
|
438 |
"""
|
439 |
+
<div style="text-align: center; margin-bottom:20px;">
|
440 |
+
<h1 style="color: #c70039; font-size: 2.8em; font-weight: bold; margin-bottom:5px;">🎬 رفيقك السينمائي 🍿</h1>
|
441 |
<p style="font-size: 1.2em; color: #555;">يا هلا بك! اضغط الزر تحت وخلنا نعطيك توصيات أفلام على كيف كيفك، مع شرح بالعامية ليش ممكن تدخل مزاجك.</p>
|
442 |
</div>"""
|
443 |
)
|
444 |
+
recommend_button = gr.Button("عطني توصيات أفلام جديدة!")
|
445 |
+
|
446 |
+
with gr.Column(elem_id="recommendation-output-column"): # Added elem_id for potential specific styling
|
447 |
+
output_recommendations = gr.HTML(label="👇 توصياتك النارية وصلت 👇")
|
448 |
|
449 |
+
# Initialize LLM when the Blocks context is active, after data loading attempt
|
|
|
450 |
if data_loaded_successfully:
|
451 |
+
initialize_llm()
|
452 |
|
453 |
+
recommend_button.click(fn=get_recommendations, inputs=None, outputs=[output_recommendations], show_progress="full")
|
454 |
+
|
455 |
gr.Markdown(
|
456 |
"""
|
457 |
+
<div style="text-align: center; margin-top: 40px; padding-top: 20px; border-top: 1px solid #eee; font-size: 0.9em; color: #777;">
|
458 |
+
<p>نتمنى لك مشاهدة ممتعة مع رفيقك السينمائي! 🎥✨</p>
|
459 |
</div>"""
|
460 |
)
|
461 |
|
462 |
if __name__ == "__main__":
|
463 |
+
# Print warnings if critical secrets are missing when running locally
|
464 |
+
if not TMDB_API_KEY:
|
465 |
+
print("\nCRITICAL WARNING: TMDB_API_KEY environment variable is NOT SET.")
|
466 |
+
print("TMDB API calls will fail. Please set it in your .env file or system environment.\n")
|
467 |
+
if not HF_TOKEN:
|
468 |
+
print("\nCRITICAL WARNING: HF_TOKEN environment variable is NOT SET.")
|
469 |
+
print(f"LLM initialization for gated models like {MODEL_NAME} will fail. Please set it.\n")
|
470 |
+
|
471 |
+
iface.launch(debug=True) # debug=True for local testing, set to False for production
|