from sentence_transformers import SentenceTransformer import gradio as gr # Load a clinical sentence transformer model = SentenceTransformer("pritamdeka/BioBERT-mnli-snli-scinli-scitail-mednli-stsb") def embed_text(text): embedding = model.encode(text, convert_to_numpy=True, normalize_embeddings=True).tolist() return embedding iface = gr.Interface( fn=embed_text, inputs=gr.Textbox(lines=5, label="Enter clinical text"), outputs="json", title="High-Accuracy Clinical Embeddings", description="BioBERT fine-tuned for semantic similarity (STSB, MedNLI)" ) iface.launch()