from transformers import AutoTokenizer, AutoModel import torch import gradio as gr # Load Bio_ClinicalBERT tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") def embed_text(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) # Mean pooling embedding = outputs.last_hidden_state.mean(dim=1).squeeze().tolist() return embedding iface = gr.Interface( fn=embed_text, inputs=gr.Textbox(lines=5, label="Enter patient text"), outputs="json", title="Clinical Text Embedding API (Bio_ClinicalBERT)" ) iface.launch()