import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
# ✅ Load a model that outputs 1024-dim vectors | |
model = SentenceTransformer('intfloat/e5-large') | |
def embed_text(text): | |
# Optionally prepend "passage: " if using e5 models | |
processed_text = "passage: " + text.strip() | |
embedding = model.encode(processed_text).tolist() | |
return embedding | |
# Gradio interface | |
iface = gr.Interface( | |
fn=embed_text, | |
inputs=gr.Textbox(lines=5, label="Enter patient text"), | |
outputs="json", | |
title="Clinical Text Embedding API (1024-dim)" | |
) | |
iface.launch() | |