embedding / app.py
s1ome123's picture
Update app.py
232a9f4 verified
raw
history blame
585 Bytes
import gradio as gr
from sentence_transformers import SentenceTransformer
# ✅ Load a model that outputs 1024-dim vectors
model = SentenceTransformer('intfloat/e5-large')
def embed_text(text):
# Optionally prepend "passage: " if using e5 models
processed_text = "passage: " + text.strip()
embedding = model.encode(processed_text).tolist()
return embedding
# Gradio interface
iface = gr.Interface(
fn=embed_text,
inputs=gr.Textbox(lines=5, label="Enter patient text"),
outputs="json",
title="Clinical Text Embedding API (1024-dim)"
)
iface.launch()