File size: 440 Bytes
66ec8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr
from sentence_transformers import SentenceTransformer

# Load the embedding model
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

def embed_text(text):
    embedding = model.encode(text).tolist()
    return embedding

iface = gr.Interface(
    fn=embed_text,
    inputs=gr.Textbox(lines=5, label="Enter patient text"),
    outputs="json",
    title="Clinical Text Embedding API"
)

iface.launch()