File size: 730 Bytes
2b41fd4
 
66ec8de
 
2b41fd4
 
 
66ec8de
 
2b41fd4
 
 
 
 
66ec8de
 
 
 
 
 
2b41fd4
66ec8de
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from transformers import AutoTokenizer, AutoModel
import torch
import gradio as gr

# Load Bio_ClinicalBERT
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
model = AutoModel.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")

def embed_text(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        outputs = model(**inputs)
    # Mean pooling
    embedding = outputs.last_hidden_state.mean(dim=1).squeeze().tolist()
    return embedding

iface = gr.Interface(
    fn=embed_text,
    inputs=gr.Textbox(lines=5, label="Enter patient text"),
    outputs="json",
    title="Clinical Text Embedding API (Bio_ClinicalBERT)"
)

iface.launch()