Spaces:
Runtime error
Runtime error
app.py
Browse files- app.py.txt +54 -0
app.py.txt
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install required libraries
|
2 |
+
!pip install unsloth peft bitsandbytes accelerate transformers
|
3 |
+
|
4 |
+
# Import necessary modules
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from unsloth import FastLanguageModel
|
7 |
+
|
8 |
+
# Define the MedQA prompt
|
9 |
+
medqa_prompt = """You are a medical QA system. Answer the following medical question clearly and in detail with complete sentences.
|
10 |
+
|
11 |
+
### Question:
|
12 |
+
{}
|
13 |
+
|
14 |
+
### Answer:
|
15 |
+
"""
|
16 |
+
|
17 |
+
# Load the model and tokenizer using unsloth
|
18 |
+
model_name = "Vijayendra/Phi4-MedQA"
|
19 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
20 |
+
model_name=model_name,
|
21 |
+
max_seq_length=2048,
|
22 |
+
dtype=None, # Use default precision
|
23 |
+
load_in_4bit=True, # Enable 4-bit quantization
|
24 |
+
device_map="auto" # Automatically map model to available devices
|
25 |
+
)
|
26 |
+
|
27 |
+
# Enable faster inference
|
28 |
+
FastLanguageModel.for_inference(model)
|
29 |
+
|
30 |
+
# Prepare the medical question
|
31 |
+
medical_question = "What are the common symptoms of diabetes?" # Replace with your medical question
|
32 |
+
inputs = tokenizer(
|
33 |
+
[medqa_prompt.format(medical_question)],
|
34 |
+
return_tensors="pt",
|
35 |
+
padding=True,
|
36 |
+
truncation=True,
|
37 |
+
max_length=1024
|
38 |
+
).to("cuda") # Ensure inputs are on the GPU
|
39 |
+
|
40 |
+
# Generate the output
|
41 |
+
outputs = model.generate(
|
42 |
+
**inputs,
|
43 |
+
max_new_tokens=512, # Allow for detailed responses
|
44 |
+
use_cache=True # Speeds up generation
|
45 |
+
)
|
46 |
+
|
47 |
+
# Decode and clean the response
|
48 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
|
50 |
+
# Extract and print the generated answer
|
51 |
+
answer_text = response.split("### Answer:")[1].strip() if "### Answer:" in response else response.strip()
|
52 |
+
|
53 |
+
print(f"Question: {medical_question}")
|
54 |
+
print(f"Answer: {answer_text}")
|