Spaces:
Running
Running
File size: 1,292 Bytes
49b098d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
from torch import nn, optim
from torch.utils.data import random_split
import pytorch_lightning as pl
from trainer import LitTrainer
from models import CNN
def main():
from torch.utils.data import DataLoader
from src.dataset import DatasetMNIST, load_mnist
mnist = load_mnist("../downloads/mnist/")
dataset, test_data = DatasetMNIST(*mnist["train"]), DatasetMNIST(*mnist["test"])
train_size = round(len(dataset) * 0.8)
validate_size = len(dataset) - train_size
train_data, validate_data = random_split(dataset, [train_size, validate_size])
train_dataloader = DataLoader(train_data, num_workers=6) # My CPU has 8 cores
validate_dataloader = DataLoader(validate_data, num_workers=2)
test_dataloader = DataLoader(test_data, num_workers=8) # My CPU has 8 cores
# grayscale channels = 1, mnist num_labels = 10
net = CNN(input_channels=1, num_classes=10)
pl_net = LitTrainer(net, nn.CrossEntropyLoss(), optim.Adam(net.parameters()))
trainer = pl.Trainer(limit_train_batches=100, max_epochs=1, default_root_dir="../checkpoints")
trainer.fit(model=pl_net, train_dataloaders=train_dataloader, val_dataloaders=validate_dataloader)
trainer.test(model=pl_net, dataloaders=test_dataloader)
if __name__ == "__main__":
main()
|