import torch from PIL import Image import random import logging import torchvision import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=8, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, pil_image=None, input_size=224,): if not pil_image: pil_image = Image.open(image_file) image = pil_image.convert('RGB') transform = build_transform(input_size=input_size) # images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in [image]] pixel_values = torch.stack(pixel_values) return pixel_values def my_collate(batch): try: targets = torch.stack([s['target'] for s in batch]) samples = torch.stack([s['samples'] for s in batch]) # targets = torch.stack([s['target'] for s in batch if s is not None]) # samples = torch.stack([s['samples'] for s in batch if s is not None]) except Exception as e: logging.warning('my_collate issue ', e) return None return samples, targets class ImageFolderSample(torchvision.datasets.ImageFolder): def __init__(self, data_path, k, processor): super().__init__(data_path) self.k = k self.processor = processor def safe_getitem(self, index): try: target_path, class_type = self.samples[index] target = torch.from_numpy(self.processor(self.loader(target_path)).data['pixel_values'][0]) input_paths = random.choices([p[0] for p in self.samples if p != target_path and class_type in p], k=self.k) assert len(input_paths) == self.k # I think it may do this by default... samples = torch.stack([torch.from_numpy(self.processor(self.loader(i)).data['pixel_values'][0]) for i in input_paths]) except Exception as e: logging.warning('getitem issue ', e) samples, target = None, None drop_mask = torch.rand(samples.shape[0],) < .2 samples[drop_mask] = 0 drop_whole_set_mask = torch.rand(1,) < .1 if drop_whole_set_mask: samples = torch.zeros_like(samples) return {'samples': samples[:, :3], 'target': target[:3]} def __getitem__(self, index: int): return self.safe_getitem(index) # https://data.mendeley.com/datasets/fs4k2zc5j5/3 # Gomez, J. C., Ibarra-Manzano, M. A., & Almanza-Ojeda, D. L. (2017). User Identification in Pinterest Through the Refinement of Cascade Fusion of Text and Images. Research in Computing Science, 144, 41-52. def get_dataset(data_path, processor): return ImageFolderSample(data_path, 8, processor) def get_dataloader(data_path, batch_size, num_workers, processor): dataloader = torch.utils.data.DataLoader( get_dataset(data_path, processor=processor), num_workers=num_workers, collate_fn=my_collate, batch_size=batch_size, shuffle=True, drop_last=True ) return dataloader