Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import time | |
import torch | |
import glob | |
import config | |
from model import get_model_and_tokenizer | |
model, model.prior_pipe.image_encoder = get_model_and_tokenizer(config.model_path, | |
'cuda', torch.bfloat16) | |
# TODO unify/merge origin and this | |
# TODO save & restart from (if it exists) dataframe parquet | |
device = "cuda" | |
import spaces | |
import matplotlib.pyplot as plt | |
import os | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import random | |
import time | |
from PIL import Image | |
# from safety_checker_improved import maybe_nsfw | |
torch.set_grad_enabled(False) | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
prevs_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'from_user_id', 'text', 'gemb']) | |
import spaces | |
start_time = time.time() | |
####################### Setup Model | |
from diffusers import EulerDiscreteScheduler | |
from PIL import Image | |
import uuid | |
def generate_gpu(in_im_embs, prompt='the scene'): | |
with torch.no_grad(): | |
in_im_embs = in_im_embs.to('cuda') | |
negative_image_embeds = in_im_embs[0] # model.prior_pipe.get_zero_embed() | |
positive_image_embeds = in_im_embs[1] | |
images = model.kandinsky_pipe( | |
num_inference_steps=50, | |
image_embeds=positive_image_embeds, | |
negative_image_embeds=negative_image_embeds, | |
guidance_scale=11, | |
).images[0] | |
cond = ( | |
model.prior_pipe.image_processor(images, return_tensors="pt") | |
.pixel_values[0] | |
.unsqueeze(0) | |
.to(dtype=model.prior_pipe.image_encoder.dtype, device=device) | |
) | |
im_emb = model.prior_pipe.image_encoder(cond)["image_embeds"] | |
return images, im_emb | |
def generate(in_im_embs, ): | |
output, im_emb = generate_gpu(in_im_embs) | |
nsfw = False#maybe_nsfw(output.images[0]) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.png" | |
if nsfw: | |
gr.Warning("NSFW content detected.") | |
# TODO could return an automatic dislike of auto dislike on the backend for neither as well; just would need refactoring. | |
return None, im_emb | |
output.save(path) | |
return path, im_emb | |
####################### | |
def sample_embs(prompt_embeds): | |
latent = torch.randn(prompt_embeds.shape[0], 1, prompt_embeds.shape[-1]) | |
if prompt_embeds.shape[1] < 8: # TODO grab as `k` arg from config | |
prompt_embeds = torch.nn.functional.pad(prompt_embeds, [0, 0, 0, 8-prompt_embeds.shape[1]]) | |
assert prompt_embeds.shape[1] == 8, f"The model is set to take `k`` cond image embeds but is shape {prompt_embeds.shape}" | |
image_embeds = model(latent.to('cuda'), prompt_embeds.to('cuda')).predicted_image_embedding | |
return image_embeds | |
def get_user_emb(embs, ys): | |
positives = [e for e, ys in zip(embs, ys) if ys == 1] | |
embs = random.sample(positives, min(8, len(positives))) | |
if len(embs) == 0: | |
positives = torch.zeros_like(im_emb)[None] | |
else: | |
positives = torch.stack(embs, 1) | |
negs = [e for e, ys in zip(embs, ys) if ys == 0] | |
negative_embs = random.sample(negs, min(8, len(negs))) | |
if len(negative_embs) == 0: | |
negatives = torch.zeros_like(im_emb)[None] | |
else: | |
negatives = torch.stack(negative_embs, 1) | |
image_embeds = torch.stack([sample_embs(negatives), sample_embs(positives)]) | |
return image_embeds | |
def background_next_image(): | |
global prevs_df | |
# only let it get N (maybe 3) ahead of the user | |
#not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]] | |
rated_rows = prevs_df[[i[1]['user:rating'] != {' ': ' '} for i in prevs_df.iterrows()]] | |
if len(rated_rows) < 4: | |
time.sleep(.1) | |
# not_rated_rows = prevs_df[[i[1]['user:rating'] == {' ': ' '} for i in prevs_df.iterrows()]] | |
return | |
user_id_list = set(rated_rows['latest_user_to_rate'].to_list()) | |
for uid in user_id_list: | |
rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is not None for i in prevs_df.iterrows()]] | |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(uid, None) is None for i in prevs_df.iterrows()]] | |
# we need to intersect not_rated_rows from this user's embed > 7. Just add a new column on which user_id spawned the | |
# media. | |
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == uid for i in not_rated_rows.iterrows()]] | |
# we don't compute more after n are in the queue for them | |
if len(unrated_from_user) >= 10: | |
continue | |
if len(rated_rows) < 4: | |
continue | |
global glob_idx | |
glob_idx += 1 | |
ems = rated_rows['embeddings'].to_list() | |
ys = [i[uid][0] for i in rated_rows['user:rating'].to_list()] | |
emz = get_user_emb(ems, ys) | |
img, embs = generate(emz) | |
if img: | |
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'latest_user_to_rate', 'text', 'gemb']) | |
tmp_df['paths'] = [img] | |
tmp_df['embeddings'] = [embs.to(torch.float32).to('cpu')] | |
tmp_df['user:rating'] = [{' ': ' '}] | |
tmp_df['from_user_id'] = [uid] | |
tmp_df['text'] = [''] | |
prevs_df = pd.concat((prevs_df, tmp_df)) | |
# we can free up storage by deleting the image | |
if len(prevs_df) > 500: | |
oldest_path = prevs_df.iloc[6]['paths'] | |
if os.path.isfile(oldest_path): | |
os.remove(oldest_path) | |
else: | |
# If it fails, inform the user. | |
print("Error: %s file not found" % oldest_path) | |
# only keep 50 images & embeddings & ips, then remove oldest besides calibrating | |
prevs_df = pd.concat((prevs_df.iloc[:6], prevs_df.iloc[7:])) | |
def pluck_img(user_id): | |
rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, None) is not None for i in prevs_df.iterrows()]] | |
ems = rated_rows['embeddings'].to_list() | |
ys = [i[user_id][0] for i in rated_rows['user:rating'].to_list()] | |
user_emb = get_user_emb(ems, ys) | |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]] | |
while len(not_rated_rows) == 0: | |
not_rated_rows = prevs_df[[i[1]['user:rating'].get(user_id, 'gone') == 'gone' for i in prevs_df.iterrows()]] | |
time.sleep(.1) | |
# TODO optimize this lol | |
unrated_from_user = not_rated_rows[[i[1]['from_user_id'] == user_id for i in not_rated_rows.iterrows()]] | |
if len(unrated_from_user) > 0: | |
print(unrated_from_user) | |
# NOTE the way I've setup pandas here is so gdm horrible. TODO overhaul | |
img = unrated_from_user['paths'].to_list()[-1] | |
return img | |
best_sim = -10000000 | |
for i in not_rated_rows.iterrows(): | |
# TODO sloppy .to but it is 3am. | |
sim = torch.cosine_similarity(i[1]['embeddings'].detach().to('cpu'), user_emb.detach().to('cpu'), -1) | |
if len(sim) > 1: sim = sim[1] | |
if sim.squeeze() > best_sim: | |
best_sim = sim | |
best_row = i[1] | |
img = best_row['paths'] | |
return img | |
def next_image(calibrate_prompts, user_id): | |
with torch.no_grad(): | |
# once we've done so many random calibration prompts out of the full media | |
if len(m_calibrate) - len(calibrate_prompts) < 5: | |
cal_video = calibrate_prompts.pop(random.randint(0, len(calibrate_prompts)-1)) | |
image = prevs_df[prevs_df['paths'] == cal_video]['paths'].to_list()[0] | |
# we switch to just getting media by similarity. | |
else: | |
image = pluck_img(user_id) | |
return image, calibrate_prompts | |
def start(_, calibrate_prompts, user_id, request: gr.Request): | |
user_id = int(str(time.time())[-7:].replace('.', '')) | |
image, calibrate_prompts = next_image(calibrate_prompts, user_id) | |
return [ | |
gr.Button(value='π', interactive=True), | |
gr.Button(value='Neither (Space)', interactive=True, visible=False), | |
gr.Button(value='π', interactive=True), | |
gr.Button(value='Start', interactive=False), | |
gr.Button(value='π Content', interactive=True, visible=False), | |
gr.Button(value='π Style', interactive=True, visible=False), | |
image, | |
calibrate_prompts, | |
user_id, | |
] | |
def choose(img, choice, calibrate_prompts, user_id, request: gr.Request): | |
global prevs_df | |
if choice == 'π': | |
choice = [1, 1] | |
elif choice == 'Neither (Space)': | |
img, calibrate_prompts = next_image(calibrate_prompts, user_id) | |
return img, calibrate_prompts | |
elif choice == 'π': | |
choice = [0, 0] | |
elif choice == 'π Style': | |
choice = [0, 1] | |
elif choice == 'π Content': | |
choice = [1, 0] | |
else: | |
assert False, f'choice is {choice}' | |
# if we detected NSFW, leave that area of latent space regardless of how they rated chosen. | |
# TODO skip allowing rating & just continue | |
if img is None: | |
print('NSFW -- choice is disliked') | |
choice = [0, 0] | |
row_mask = [p.split('/')[-1] in img for p in prevs_df['paths'].to_list()] | |
# if it's still in the dataframe, add the choice | |
if len(prevs_df.loc[row_mask, 'user:rating']) > 0: | |
prevs_df.loc[row_mask, 'user:rating'][0][user_id] = choice | |
prevs_df.loc[row_mask, 'latest_user_to_rate'] = [user_id] | |
else: | |
print('Image apparently removed', img) | |
img, calibrate_prompts = next_image(calibrate_prompts, user_id) | |
return img, calibrate_prompts | |
css = '''.gradio-container{max-width: 700px !important} | |
#description{text-align: center} | |
#description h1, #description h3{display: block} | |
#description p{margin-top: 0} | |
.fade-in-out {animation: fadeInOut 3s forwards} | |
@keyframes fadeInOut { | |
0% { | |
background: var(--bg-color); | |
} | |
100% { | |
background: var(--button-secondary-background-fill); | |
} | |
} | |
''' | |
js_head = ''' | |
<script> | |
document.addEventListener('keydown', function(event) { | |
if (event.key === 'a' || event.key === 'A') { | |
// Trigger click on 'dislike' if 'A' is pressed | |
document.getElementById('dislike').click(); | |
} else if (event.key === ' ' || event.keyCode === 32) { | |
// Trigger click on 'neither' if Spacebar is pressed | |
document.getElementById('neither').click(); | |
} else if (event.key === 'l' || event.key === 'L') { | |
// Trigger click on 'like' if 'L' is pressed | |
document.getElementById('like').click(); | |
} | |
}); | |
function fadeInOut(button, color) { | |
button.style.setProperty('--bg-color', color); | |
button.classList.remove('fade-in-out'); | |
void button.offsetWidth; // This line forces a repaint by accessing a DOM property | |
button.classList.add('fade-in-out'); | |
button.addEventListener('animationend', () => { | |
button.classList.remove('fade-in-out'); // Reset the animation state | |
}, {once: true}); | |
} | |
document.body.addEventListener('click', function(event) { | |
const target = event.target; | |
if (target.id === 'dislike') { | |
fadeInOut(target, '#ff1717'); | |
} else if (target.id === 'like') { | |
fadeInOut(target, '#006500'); | |
} else if (target.id === 'neither') { | |
fadeInOut(target, '#cccccc'); | |
} | |
}); | |
</script> | |
''' | |
with gr.Blocks(head=js_head, css=css) as demo: | |
gr.Markdown('''# The Other Tiger | |
### Generative Recommenders for Exporation of Possible Images | |
Explore the latent space using binary feedback. | |
[rynmurdock.github.io](https://rynmurdock.github.io/) | |
''', elem_id="description") | |
user_id = gr.State() | |
# calibration videos -- this is a misnomer now :D | |
calibrate_prompts = gr.State( glob.glob('image_init/*') ) | |
def l(): | |
return None | |
with gr.Row(elem_id='output-image'): | |
img = gr.Image( | |
label='Lightning', | |
interactive=False, | |
elem_id="output_im", | |
type='filepath', | |
height=700, | |
width=700, | |
) | |
with gr.Row(equal_height=True): | |
b3 = gr.Button(value='π', interactive=False, elem_id="dislike") | |
b2 = gr.Button(value='Neither (Space)', interactive=False, elem_id="neither", visible=False) | |
b1 = gr.Button(value='π', interactive=False, elem_id="like") | |
with gr.Row(equal_height=True): | |
b6 = gr.Button(value='π Style', interactive=False, elem_id="dislike like", visible=False) | |
b5 = gr.Button(value='π Content', interactive=False, elem_id="like dislike", visible=False) | |
b1.click( | |
choose, | |
[img, b1, calibrate_prompts, user_id], | |
[img, calibrate_prompts, ], | |
) | |
b2.click( | |
choose, | |
[img, b2, calibrate_prompts, user_id], | |
[img, calibrate_prompts, ], | |
) | |
b3.click( | |
choose, | |
[img, b3, calibrate_prompts, user_id], | |
[img, calibrate_prompts, ], | |
) | |
b5.click( | |
choose, | |
[img, b5, calibrate_prompts, user_id], | |
[img, calibrate_prompts, ], | |
) | |
b6.click( | |
choose, | |
[img, b6, calibrate_prompts, user_id], | |
[img, calibrate_prompts, ], | |
) | |
with gr.Row(): | |
b4 = gr.Button(value='Start') | |
b4.click(start, | |
[b4, calibrate_prompts, user_id], | |
[b1, b2, b3, b4, b5, b6, img, calibrate_prompts, user_id, ] | |
) | |
with gr.Row(): | |
html = gr.HTML('''<div style='text-align:center; font-size:20px'>You will calibrate for several images and then roam. </ div><br><br><br> | |
<br><br> | |
<div style='text-align:center; font-size:14px'>Thanks to @multimodalart for their contributions to the demo, esp. the interface and @maxbittker for feedback. | |
</ div>''') | |
# TODO quiet logging | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(func=background_next_image, trigger="interval", seconds=.2) | |
scheduler.start() | |
# TODO shouldn't call this before gradio launch, yeah? | |
def encode_space(x): | |
im = ( | |
model.prior_pipe.image_processor(x, return_tensors="pt") | |
.pixel_values[0] | |
.unsqueeze(0) | |
.to(dtype=model.prior_pipe.image_encoder.dtype, device=device) | |
) | |
im_emb = model.prior_pipe.image_encoder(im)["image_embeds"] | |
return im_emb.detach().to('cpu').to(torch.float32) | |
# NOTE: | |
# media is moved into a random tmp folder so we need to parse filenames carefully. | |
# do not have any cases where a file name is the same or could be `in` another filename | |
# you also maybe can't use jpegs lmao | |
# prep our calibration videos | |
m_calibrate = glob.glob('image_init/*') | |
for im in m_calibrate: | |
tmp_df = pd.DataFrame(columns=['paths', 'embeddings', 'ips', 'user:rating', 'text', 'gemb', 'from_user_id']) | |
tmp_df['paths'] = [im] | |
image = Image.open(im).convert('RGB') | |
im_emb = encode_space(image) | |
tmp_df['embeddings'] = [im_emb.detach().to('cpu')] | |
tmp_df['user:rating'] = [{' ': ' '}] | |
tmp_df['text'] = [''] | |
# seems to break things... | |
tmp_df['from_user_id'] = [0] | |
tmp_df['latest_user_to_rate'] = [0] | |
prevs_df = pd.concat((prevs_df, tmp_df)) | |
glob_idx = 0 | |
demo.launch(share=True,) | |