|
import os
|
|
import json
|
|
import torch
|
|
from torch import nn
|
|
|
|
class SparseAutoencoder(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
n_dirs_local: int,
|
|
d_model: int,
|
|
k: int,
|
|
auxk: int,
|
|
dead_steps_threshold: int,
|
|
auxk_coef: float
|
|
):
|
|
super().__init__()
|
|
self.n_dirs_local = n_dirs_local
|
|
self.d_model = d_model
|
|
self.k = k
|
|
self.auxk = auxk
|
|
self.dead_steps_threshold = dead_steps_threshold
|
|
self.auxk_coef = auxk_coef
|
|
self.encoder = nn.Linear(d_model, n_dirs_local, bias=False)
|
|
self.decoder = nn.Linear(n_dirs_local, d_model, bias=False)
|
|
|
|
self.pre_bias = nn.Parameter(torch.zeros(d_model))
|
|
self.latent_bias = nn.Parameter(torch.zeros(n_dirs_local))
|
|
|
|
self.stats_last_nostats_last_nonzeronzero: torch.Tensor
|
|
self.register_buffer("stats_last_nonzero", torch.zeros(n_dirs_local, dtype=torch.long))
|
|
|
|
def auxk_mask_fn(x):
|
|
dead_mask = self.stats_last_nonzero > dead_steps_threshold
|
|
x.data *= dead_mask
|
|
return x
|
|
|
|
self.auxk_mask_fn = auxk_mask_fn
|
|
|
|
|
|
|
|
self.decoder.weight.data = self.encoder.weight.data.T.clone()
|
|
|
|
|
|
self.decoder.weight.data = self.decoder.weight.data.T.contiguous().T
|
|
self.mse_scale = 1
|
|
unit_norm_decoder_(self)
|
|
|
|
def save_to_disk(self, path: str):
|
|
PATH_TO_CFG = 'config.json'
|
|
PATH_TO_WEIGHTS = 'state_dict.pth'
|
|
|
|
cfg = {
|
|
"n_dirs_local": self.n_dirs_local,
|
|
"d_model": self.d_model,
|
|
"k": self.k,
|
|
"auxk": self.auxk,
|
|
"dead_steps_threshold": self.dead_steps_threshold,
|
|
"auxk_coef": self.auxk_coef
|
|
}
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
with open(os.path.join(path, PATH_TO_CFG), 'w') as f:
|
|
json.dump(cfg, f)
|
|
|
|
torch.save({
|
|
"state_dict": self.state_dict(),
|
|
}, os.path.join(path, PATH_TO_WEIGHTS))
|
|
|
|
@classmethod
|
|
def load_from_disk(cls, path: str):
|
|
PATH_TO_CFG = 'config.json'
|
|
PATH_TO_WEIGHTS = 'state_dict.pth'
|
|
|
|
with open(os.path.join(path, PATH_TO_CFG), 'r') as f:
|
|
cfg = json.load(f)
|
|
|
|
ae = cls(
|
|
n_dirs_local=cfg["n_dirs_local"],
|
|
d_model=cfg["d_model"],
|
|
k=cfg["k"],
|
|
auxk=cfg["auxk"],
|
|
dead_steps_threshold=cfg["dead_steps_threshold"],
|
|
auxk_coef = cfg["auxk_coef"] if "auxk_coef" in cfg else 1/32
|
|
)
|
|
|
|
state_dict = torch.load(os.path.join(path, PATH_TO_WEIGHTS))["state_dict"]
|
|
ae.load_state_dict(state_dict)
|
|
|
|
return ae
|
|
|
|
@property
|
|
def n_dirs(self):
|
|
return self.n_dirs_local
|
|
|
|
def encode(self, x):
|
|
x = x - self.pre_bias
|
|
latents_pre_act = self.encoder(x) + self.latent_bias
|
|
|
|
vals, inds = torch.topk(
|
|
latents_pre_act,
|
|
k=self.k,
|
|
dim=-1
|
|
)
|
|
|
|
latents = torch.zeros_like(latents_pre_act)
|
|
latents.scatter_(-1, inds, torch.relu(vals))
|
|
|
|
return latents
|
|
|
|
def encode_with_k(self, x, k):
|
|
x = x - self.pre_bias
|
|
latents_pre_act = self.encoder(x) + self.latent_bias
|
|
|
|
vals, inds = torch.topk(
|
|
latents_pre_act,
|
|
k=k,
|
|
dim=-1
|
|
)
|
|
|
|
latents = torch.zeros_like(latents_pre_act)
|
|
latents.scatter_(-1, inds, torch.relu(vals))
|
|
|
|
return latents
|
|
|
|
def encode_without_topk(self, x):
|
|
x = x - self.pre_bias
|
|
latents_pre_act = torch.relu(self.encoder(x) + self.latent_bias)
|
|
return latents_pre_act
|
|
|
|
|
|
def forward(self, x):
|
|
x = x - self.pre_bias
|
|
latents_pre_act = self.encoder(x) + self.latent_bias
|
|
l0 = (latents_pre_act > 0).float().sum(-1).mean()
|
|
vals, inds = torch.topk(
|
|
latents_pre_act,
|
|
k=self.k,
|
|
dim=-1
|
|
)
|
|
with torch.no_grad():
|
|
|
|
tmp = torch.zeros_like(self.stats_last_nonzero)
|
|
tmp.scatter_add_(
|
|
0,
|
|
inds.reshape(-1),
|
|
(vals > 1e-3).to(tmp.dtype).reshape(-1),
|
|
)
|
|
self.stats_last_nonzero *= 1 - tmp.clamp(max=1)
|
|
self.stats_last_nonzero += 1
|
|
|
|
del tmp
|
|
|
|
if self.auxk is not None:
|
|
auxk_vals, auxk_inds = torch.topk(
|
|
self.auxk_mask_fn(latents_pre_act),
|
|
k=self.auxk,
|
|
dim=-1
|
|
)
|
|
else:
|
|
auxk_inds = None
|
|
auxk_vals = None
|
|
|
|
|
|
|
|
vals = torch.relu(vals)
|
|
if auxk_vals is not None:
|
|
auxk_vals = torch.relu(auxk_vals)
|
|
|
|
rows, cols = latents_pre_act.size()
|
|
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, self.k).reshape(-1)
|
|
vals = vals.reshape(-1)
|
|
inds = inds.reshape(-1)
|
|
|
|
indices = torch.stack([row_indices.to(inds.device), inds])
|
|
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols]))
|
|
|
|
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias
|
|
|
|
mse_loss = self.mse_scale * self.mse(recons, x)
|
|
|
|
|
|
if auxk_vals is not None:
|
|
auxk_recons = self.decode_sparse(auxk_inds, auxk_vals)
|
|
auxk_loss =self.auxk_coef * self.normalized_mse(auxk_recons, x - recons.detach() + self.pre_bias.detach()).nan_to_num(0)
|
|
else:
|
|
auxk_loss = 0.0
|
|
|
|
total_loss = mse_loss + auxk_loss
|
|
|
|
return recons, total_loss, {
|
|
"inds": inds,
|
|
"vals": vals,
|
|
"auxk_inds": auxk_inds,
|
|
"auxk_vals": auxk_vals,
|
|
"l0": l0,
|
|
"train_recons": mse_loss,
|
|
"train_maxk_recons": auxk_loss
|
|
}
|
|
|
|
|
|
def decode_sparse(self, inds, vals):
|
|
rows, cols = inds.shape[0], self.n_dirs
|
|
|
|
row_indices = torch.arange(rows).unsqueeze(1).expand(-1, inds.shape[1]).reshape(-1)
|
|
vals = vals.reshape(-1)
|
|
inds = inds.reshape(-1)
|
|
|
|
indices = torch.stack([row_indices.to(inds.device), inds])
|
|
|
|
sparse_tensor = torch.sparse_coo_tensor(indices, vals, torch.Size([rows, cols]))
|
|
|
|
recons = torch.sparse.mm(sparse_tensor, self.decoder.weight.T) + self.pre_bias
|
|
return recons
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def mse(self, recons, x):
|
|
|
|
return ((recons - x) ** 2).mean()
|
|
|
|
def normalized_mse(self, recon: torch.Tensor, xs: torch.Tensor) -> torch.Tensor:
|
|
|
|
xs_mu = xs.mean(dim=0)
|
|
|
|
loss = self.mse(recon, xs) / self.mse(
|
|
xs_mu[None, :].broadcast_to(xs.shape), xs
|
|
)
|
|
|
|
return loss
|
|
|
|
def unit_norm_decoder_(autoencoder: SparseAutoencoder) -> None:
|
|
|
|
autoencoder.decoder.weight.data /= autoencoder.decoder.weight.data.norm(dim=0)
|
|
|
|
|
|
def unit_norm_decoder_grad_adjustment_(autoencoder) -> None:
|
|
|
|
assert autoencoder.decoder.weight.grad is not None
|
|
|
|
autoencoder.decoder.weight.grad +=\
|
|
torch.einsum("bn,bn->n", autoencoder.decoder.weight.data, autoencoder.decoder.weight.grad) *\
|
|
autoencoder.decoder.weight.data * -1 |