import os
from dotenv import load_dotenv
import streamlit as st
import webchat
import utils
# URL of the hosted LLMs is hardcoded because at this time all LLMs share the same endpoint
url = "https://us-south.ml.cloud.ibm.com"
# These global variables will be updated in get_credentials() function
watsonx_project_id = ""
api_key = ""
def main():
utils.get_credentials()
st.set_page_config(layout="wide", page_title="RAG Web Demo", page_icon="")
utils.load_css("styles.css")
# Streamlit app title with style
st.markdown("""
Insert the website you want to chat with and ask your question.
""", unsafe_allow_html=True)
# Sidebar for settings
st.sidebar.header("Settings")
st.sidebar.markdown("Insert your credentials of [IBM Cloud](https://cloud.ibm.com/login) for watsonx.ai \n The data is not saved in th server. Your data is secured.", unsafe_allow_html=True)
st.sidebar.markdown("
", unsafe_allow_html=True)
api_key_input = st.sidebar.text_input("API Key", api_key, type="password")
project_id_input = st.sidebar.text_input("Project ID", watsonx_project_id)
# Update credentials if provided by the user
if api_key_input:
globals()["api_key"] = api_key_input
if project_id_input:
globals()["watsonx_project_id"] = project_id_input
# Main input area
user_url = st.text_input('Provide a URL')
# UI component to enter the question
question = st.text_area('Question', height=100)
button_clicked = st.button("Answer the question")
st.markdown("
", unsafe_allow_html=True)
st.subheader("Response")
collection_name="base"
if globals()["api_key"] and globals()["watsonx_project_id"]:
# Provide a unique name for this website (lower case). Use the same name for the same URL to avoid loading data multiple times.
#collection_name = utils.create_collection_name(user_url)
if button_clicked and user_url:
# Invoke the LLM when the button is clicked
response = webchat.answer_questions_from_web(api_key, watsonx_project_id, user_url, question, collection_name)
st.write(response)
else:
st.warning("Please provide API Key and Project ID in the sidebar.")
# Cleaning Vector Database
st.sidebar.markdown("
", unsafe_allow_html=True)
st.sidebar.header("Memory")
clean_button_clicked = st.sidebar.button("Clean Memory")
if clean_button_clicked :
if collection_name: # Check if collection_name is defined and not empty
utils.clear_collection(collection_name)
st.sidebar.success("Memory cleared successfully!")
#st.sidebar.markdown(collection_name, unsafe_allow_html=True)
print("Memory cleared successfully!")
else:
st.sidebar.error("Collection name is not defined or empty.")
if __name__ == "__main__":
main()