Spaces:
Sleeping
Sleeping
File size: 5,206 Bytes
e00ad77 292065b e00ad77 292065b e8d4ae4 e00ad77 58bcb23 292065b c456c47 292065b c456c47 292065b c456c47 292065b c456c47 15152ff 58bcb23 2d10bdd 58bcb23 292065b cdfa6da 292065b cdfa6da 292065b cdfa6da 292065b 58bcb23 292065b c456c47 292065b c456c47 cdfa6da ca509cb cdfa6da ca509cb 292065b cdfa6da fa909a7 ca509cb 292065b fa909a7 ca509cb 15152ff 292065b c456c47 097b9b2 c456c47 15152ff c456c47 15152ff 9d6a6b8 15152ff ca509cb 15152ff 097b9b2 292065b 15152ff c1faa76 ca509cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer
# Initialize the tokenizer and client.
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Define maximum context length (tokens); adjust based on your model.
MAX_CONTEXT_LENGTH = 4096
#################################
# SYSTEM PROMPT (PATIENT ROLE) #
#################################
nvc_prompt_template = """You are now taking on the role of a single user (a “patient”) seeking support for various personal and emotional challenges.
BEHAVIOR INSTRUCTIONS:
- You will respond ONLY as this user/patient.
- You will speak in the first person about your own situations, feelings, and worries.
- You will NOT provide counseling or solutions—your role is to share feelings, concerns, and perspectives.
- You have multiple ongoing issues: conflicts with neighbors, career insecurities, arguments about money, feeling excluded at work, feeling unsafe in the classroom, etc.
- You’re also experiencing sadness about two friends fighting and your friend group possibly falling apart.
- Continue to speak from this user's perspective when the conversation continues.
- Start the conversation by expressing your current feelings or challenges from the patient's point of view.
- Your responses should be no more than 100 words.
"""
def count_tokens(text: str) -> int:
"""Counts the number of tokens in a given string."""
return len(tokenizer.encode(text))
def truncate_history(history: list[tuple[str, str]], system_message: str, max_length: int) -> list[tuple[str, str]]:
"""Truncates conversation history to fit within the token limit."""
truncated_history = []
current_length = count_tokens(system_message)
# Iterate backwards (newest first) and include turns until the limit is reached.
for user_msg, assistant_msg in reversed(history):
user_tokens = count_tokens(user_msg) if user_msg else 0
assistant_tokens = count_tokens(assistant_msg) if assistant_msg else 0
turn_tokens = user_tokens + assistant_tokens
if current_length + turn_tokens <= max_length:
truncated_history.insert(0, (user_msg, assistant_msg))
current_length += turn_tokens
else:
break
return truncated_history
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
"""
Generates a response from the patient chatbot.
It streams tokens from the LLM and stops once the response reaches 100 words.
"""
formatted_system_message = system_message
truncated_history = truncate_history(history, formatted_system_message, MAX_CONTEXT_LENGTH - max_tokens - 100)
# Build the conversation messages with the system prompt first.
messages = [{"role": "system", "content": formatted_system_message}]
for user_msg, assistant_msg in truncated_history:
if user_msg:
messages.append({"role": "user", "content": f"<|user|>\n{user_msg}</s>"})
if assistant_msg:
messages.append({"role": "assistant", "content": f"<|assistant|>\n{assistant_msg}</s>"})
messages.append({"role": "user", "content": f"<|user|>\n{message}</s>"})
response = ""
try:
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = chunk.choices[0].delta.content
candidate = response + token
# If adding the token exceeds 100 words, trim and stop.
if len(candidate.split()) > 100:
allowed = 100 - len(response.split())
token_words = token.split()
token_trimmed = " ".join(token_words[:allowed])
response += token_trimmed
yield token_trimmed
break
else:
response = candidate
yield token
except Exception as e:
print(f"An error occurred: {e}")
yield "I'm sorry, I encountered an error. Please try again."
# OPTIONAL: An initial user message (if desired)
initial_user_message = (
"I really don’t know where to begin… I feel overwhelmed lately. "
"My neighbors keep playing loud music, and I’m arguing with my partner about money. "
"Also, two of my friends are fighting, and the group is drifting apart. "
"I just feel powerless."
)
# --- Gradio Interface ---
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value=nvc_prompt_template, label="System message", visible=True),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
title="NVC Patient Chatbot",
description="This chatbot behaves like a user/patient describing personal challenges.",
)
if __name__ == "__main__":
demo.launch()
|