Spaces:
Sleeping
Sleeping
File size: 11,566 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import time
import types
import inspect
import random
from functools import partial
import torch
from ..utils import set_locals_in_self, normalize_data
from .prior import PriorDataLoader, Batch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import scipy.stats as stats
import math
def get_batch_to_dataloader(get_batch_method_):
#DL = partial(DL, get_batch_method=get_batch_method_)
class DL(PriorDataLoader):
get_batch_method = get_batch_method_
# Caution, you might need to set self.num_features manually if it is not part of the args.
def __init__(self, num_steps, **get_batch_kwargs):
set_locals_in_self(locals())
# The stuff outside the or is set as class attribute before instantiation.
self.num_features = get_batch_kwargs.get('num_features') or self.num_features
self.epoch_count = 0
print('DataLoader.__dict__', self.__dict__)
@staticmethod
def gbm(*args, eval_pos_seq_len_sampler, **kwargs):
kwargs['single_eval_pos'], kwargs['seq_len'] = eval_pos_seq_len_sampler()
# Scales the batch size dynamically with the power of 'dynamic_batch_size'.
# A transformer with quadratic memory usage in the seq len would need a power of 2 to keep memory constant.
if 'dynamic_batch_size' in kwargs and kwargs['dynamic_batch_size'] > 0 and kwargs['dynamic_batch_size'] is not None:
kwargs['batch_size'] = kwargs['batch_size'] * math.floor(
math.pow(kwargs['seq_len_maximum'], kwargs['dynamic_batch_size'])
/ math.pow(kwargs['seq_len'], kwargs['dynamic_batch_size'])
)
batch: Batch = get_batch_method_(*args, **kwargs)
if batch.single_eval_pos is None:
batch.single_eval_pos = kwargs['single_eval_pos']
return batch
def __len__(self):
return self.num_steps
def get_test_batch(self, **kwargs): # does not increase epoch_count
return self.gbm(**self.get_batch_kwargs, epoch=self.epoch_count, model=self.model if hasattr(self, 'model') else None, **kwargs)
def __iter__(self):
assert hasattr(self, 'model'), "Please assign model with `dl.model = ...` before training."
self.epoch_count += 1
return iter(self.gbm(**self.get_batch_kwargs, epoch=self.epoch_count - 1, model=self.model) for _ in range(self.num_steps))
return DL
def plot_features(data, targets, fig=None, categorical=True, plot_diagonal=True):
import seaborn as sns
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
targets = targets.detach().cpu().numpy()
fig2 = fig if fig else plt.figure(figsize=(8, 8))
spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
for d in range(0, data.shape[1]):
for d2 in range(0, data.shape[1]):
if d > d2:
continue
sub_ax = fig2.add_subplot(spec2[d, d2])
sub_ax.set_xticks([])
sub_ax.set_yticks([])
if d == d2:
if plot_diagonal:
if categorical:
sns.histplot(data[:, d],hue=targets[:],ax=sub_ax,legend=False, palette="deep")
else:
sns.histplot(data[:, d], ax=sub_ax, legend=False)
sub_ax.set(ylabel=None)
else:
if categorical:
sns.scatterplot(x=data[:, d], y=data[:, d2],
hue=targets[:],legend=False, palette="deep")
else:
sns.scatterplot(x=data[:, d], y=data[:, d2],
hue=targets[:], legend=False)
#plt.scatter(data[:, d], data[:, d2],
# c=targets[:])
#sub_ax.get_xaxis().set_ticks([])
#sub_ax.get_yaxis().set_ticks([])
plt.subplots_adjust(wspace=0.05, hspace=0.05)
fig2.show()
def plot_prior(prior, samples=1000, buckets=50):
s = np.array([prior() for _ in range(0, samples)])
count, bins, ignored = plt.hist(s, buckets, density=True)
print(s.min())
plt.show()
trunc_norm_sampler_f = lambda mu, sigma : lambda: stats.truncnorm((0 - mu) / sigma, (1000000 - mu) / sigma, loc=mu, scale=sigma).rvs(1)[0]
beta_sampler_f = lambda a, b : lambda : np.random.beta(a, b)
gamma_sampler_f = lambda a, b : lambda : np.random.gamma(a, b)
uniform_sampler_f = lambda a, b : lambda : np.random.uniform(a, b)
uniform_int_sampler_f = lambda a, b : lambda : round(np.random.uniform(a, b))
def zipf_sampler_f(a, b, c):
x = np.arange(b, c)
weights = x ** (-a)
weights /= weights.sum()
return lambda : stats.rv_discrete(name='bounded_zipf', values=(x, weights)).rvs(1)
scaled_beta_sampler_f = lambda a, b, scale, minimum : lambda : minimum + round(beta_sampler_f(a, b)() * (scale - minimum))
def normalize_by_used_features_f(x, num_features_used, num_features, normalize_with_sqrt=False):
if normalize_with_sqrt:
return x / (num_features_used / num_features)**(1 / 2)
return x / (num_features_used / num_features)
def order_by_y(x, y):
order = torch.argsort(y if random.randint(0, 1) else -y, dim=0)[:, 0, 0]
order = order.reshape(2, -1).transpose(0, 1).reshape(-1)#.reshape(seq_len)
x = x[order] # .reshape(2, -1).transpose(0, 1).reshape(-1).flip([0]).reshape(seq_len, 1, -1)
y = y[order] # .reshape(2, -1).transpose(0, 1).reshape(-1).reshape(seq_len, 1, -1)
return x, y
def randomize_classes(x, num_classes):
classes = torch.arange(0, num_classes, device=x.device)
random_classes = torch.randperm(num_classes, device=x.device).type(x.type())
x = ((x.unsqueeze(-1) == classes) * random_classes).sum(-1)
return x
@torch.no_grad()
def sample_num_feaetures_get_batch(batch_size, seq_len, num_features, hyperparameters, get_batch, **kwargs):
if hyperparameters.get('sample_num_features', True) and kwargs['epoch'] > 0: # don't sample on test batch
num_features = random.randint(1, num_features)
return get_batch(batch_size, seq_len, num_features, hyperparameters=hyperparameters, **kwargs)
class CategoricalActivation(nn.Module):
def __init__(self, categorical_p=0.1, ordered_p=0.7
, keep_activation_size=False
, num_classes_sampler=zipf_sampler_f(0.8, 1, 10)):
self.categorical_p = categorical_p
self.ordered_p = ordered_p
self.keep_activation_size = keep_activation_size
self.num_classes_sampler = num_classes_sampler
super().__init__()
def forward(self, x):
# x shape: T, B, H
x = nn.Softsign()(x)
num_classes = self.num_classes_sampler()
hid_strength = torch.abs(x).mean(0).unsqueeze(0) if self.keep_activation_size else None
categorical_classes = torch.rand((x.shape[1], x.shape[2])) < self.categorical_p
class_boundaries = torch.zeros((num_classes - 1, x.shape[1], x.shape[2]), device=x.device, dtype=x.dtype)
# Sample a different index for each hidden dimension, but shared for all batches
for b in range(x.shape[1]):
for h in range(x.shape[2]):
ind = torch.randint(0, x.shape[0], (num_classes - 1,))
class_boundaries[:, b, h] = x[ind, b, h]
for b in range(x.shape[1]):
x_rel = x[:, b, categorical_classes[b]]
boundaries_rel = class_boundaries[:, b, categorical_classes[b]].unsqueeze(1)
x[:, b, categorical_classes[b]] = (x_rel > boundaries_rel).sum(dim=0).float() - num_classes / 2
ordered_classes = torch.rand((x.shape[1],x.shape[2])) < self.ordered_p
ordered_classes = torch.logical_and(ordered_classes, categorical_classes)
x[:, ordered_classes] = randomize_classes(x[:, ordered_classes], num_classes)
x = x * hid_strength if self.keep_activation_size else x
return x
class QuantizationActivation(torch.nn.Module):
def __init__(self, n_thresholds, reorder_p = 0.5) -> None:
super().__init__()
self.n_thresholds = n_thresholds
self.reorder_p = reorder_p
self.thresholds = torch.nn.Parameter(torch.randn(self.n_thresholds))
def forward(self, x):
x = normalize_data(x).unsqueeze(-1)
x = (x > self.thresholds).sum(-1)
if random.random() < self.reorder_p:
x = randomize_classes(x.unsqueeze(-1), self.n_thresholds).squeeze(-1)
#x = ((x.float() - self.n_thresholds/2) / self.n_thresholds)# * data_std + data_mean
x = normalize_data(x)
return x
class NormalizationActivation(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
x = normalize_data(x)
return x
class PowerActivation(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
#self.exp = torch.nn.Parameter(0.5 * torch.ones(1))
self.shared_exp_strength = 0.5
# TODO: Somehow this is only initialized once, so it's the same for all runs
def forward(self, x):
#print(torch.nn.functional.softplus(x), self.exp)
shared_exp = torch.randn(1)
exp = torch.nn.Parameter((shared_exp*self.shared_exp_strength + shared_exp * torch.randn(x.shape[-1])*(1-self.shared_exp_strength)) * 2 + 0.5).to(x.device)
x_ = torch.pow(torch.nn.functional.softplus(x) + 0.001, exp)
if False:
print(x[0:3, 0, 0].cpu().numpy()
, torch.nn.functional.softplus(x[0:3, 0, 0]).cpu().numpy()
, x_[0:3, 0, 0].cpu().numpy()
, normalize_data(x_)[0:3, 0, 0].cpu().numpy()
, self.exp.cpu().numpy())
return x_
def lambda_time(f, name='', enabled=True):
if not enabled:
return f()
start = time.time()
r = f()
print('Timing', name, time.time()-start)
return r
def pretty_get_batch(get_batch):
"""
Genereate string representation of get_batch function
:param get_batch:
:return:
"""
if isinstance(get_batch, types.FunctionType):
return f'<{get_batch.__module__}.{get_batch.__name__} {inspect.signature(get_batch)}'
else:
return repr(get_batch)
class get_batch_sequence(list):
'''
This will call the get_batch_methods in order from the back and pass the previous as `get_batch` kwarg.
For example for `get_batch_methods=[get_batch_1, get_batch_2, get_batch_3]` this will produce a call
equivalent to `get_batch_3(*args,get_batch=partial(partial(get_batch_2),get_batch=get_batch_1,**kwargs))`.
get_batch_methods: all priors, but the first, muste have a `get_batch` argument
'''
def __init__(self, *get_batch_methods):
if len(get_batch_methods) == 0:
raise ValueError('Must have at least one get_batch method')
super().__init__(get_batch_methods)
def __repr__(self):
s = ',\n\t'.join([f"{pretty_get_batch(get_batch)}" for get_batch in self])
return f"get_batch_sequence(\n\t{s}\n)"
def __call__(self, *args, **kwargs):
"""
Standard kwargs are: batch_size, seq_len, num_features
This returns a priors.Batch object.
"""
final_get_batch = self[0]
for get_batch in self[1:]:
final_get_batch = partial(get_batch, get_batch=final_get_batch)
return final_get_batch(*args, **kwargs)
|