File size: 11,566 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import time
import types
import inspect
import random
from functools import partial

import torch

from ..utils import set_locals_in_self, normalize_data
from .prior import PriorDataLoader, Batch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import scipy.stats as stats
import math

def get_batch_to_dataloader(get_batch_method_):
    #DL = partial(DL, get_batch_method=get_batch_method_)
    class DL(PriorDataLoader):
        get_batch_method = get_batch_method_

        # Caution, you might need to set self.num_features manually if it is not part of the args.
        def __init__(self, num_steps, **get_batch_kwargs):
            set_locals_in_self(locals())

            # The stuff outside the or is set as class attribute before instantiation.
            self.num_features = get_batch_kwargs.get('num_features') or self.num_features
            self.epoch_count = 0
            print('DataLoader.__dict__', self.__dict__)

        @staticmethod
        def gbm(*args, eval_pos_seq_len_sampler, **kwargs):
            kwargs['single_eval_pos'], kwargs['seq_len'] = eval_pos_seq_len_sampler()
            # Scales the batch size dynamically with the power of 'dynamic_batch_size'.
            # A transformer with quadratic memory usage in the seq len would need a power of 2 to keep memory constant.
            if 'dynamic_batch_size' in kwargs and kwargs['dynamic_batch_size'] > 0 and kwargs['dynamic_batch_size'] is not None:
                kwargs['batch_size'] = kwargs['batch_size'] * math.floor(
                    math.pow(kwargs['seq_len_maximum'], kwargs['dynamic_batch_size'])
                    / math.pow(kwargs['seq_len'], kwargs['dynamic_batch_size'])
                )
            batch: Batch = get_batch_method_(*args, **kwargs)
            if batch.single_eval_pos is None:
                batch.single_eval_pos = kwargs['single_eval_pos']
            return batch

        def __len__(self):
            return self.num_steps

        def get_test_batch(self, **kwargs): # does not increase epoch_count
            return self.gbm(**self.get_batch_kwargs, epoch=self.epoch_count, model=self.model if hasattr(self, 'model') else None, **kwargs)

        def __iter__(self):
            assert hasattr(self, 'model'), "Please assign model with `dl.model = ...` before training."
            self.epoch_count += 1
            return iter(self.gbm(**self.get_batch_kwargs, epoch=self.epoch_count - 1, model=self.model) for _ in range(self.num_steps))

    return DL


def plot_features(data, targets, fig=None, categorical=True, plot_diagonal=True):
    import seaborn as sns
    if torch.is_tensor(data):
        data = data.detach().cpu().numpy()
        targets = targets.detach().cpu().numpy()

    fig2 = fig if fig else plt.figure(figsize=(8, 8))
    spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
    for d in range(0, data.shape[1]):
        for d2 in range(0, data.shape[1]):
            if d > d2:
                continue
            sub_ax = fig2.add_subplot(spec2[d, d2])
            sub_ax.set_xticks([])
            sub_ax.set_yticks([])
            if d == d2:
                if plot_diagonal:
                    if categorical:
                        sns.histplot(data[:, d],hue=targets[:],ax=sub_ax,legend=False, palette="deep")
                    else:
                        sns.histplot(data[:, d], ax=sub_ax, legend=False)
                sub_ax.set(ylabel=None)
            else:
                if categorical:
                    sns.scatterplot(x=data[:, d], y=data[:, d2],
                           hue=targets[:],legend=False, palette="deep")
                else:
                    sns.scatterplot(x=data[:, d], y=data[:, d2],
                                    hue=targets[:], legend=False)
                #plt.scatter(data[:, d], data[:, d2],
                #               c=targets[:])
            #sub_ax.get_xaxis().set_ticks([])
            #sub_ax.get_yaxis().set_ticks([])
    plt.subplots_adjust(wspace=0.05, hspace=0.05)
    fig2.show()


def plot_prior(prior, samples=1000, buckets=50):
    s = np.array([prior() for _ in range(0, samples)])
    count, bins, ignored = plt.hist(s, buckets, density=True)
    print(s.min())
    plt.show()

trunc_norm_sampler_f = lambda mu, sigma : lambda: stats.truncnorm((0 - mu) / sigma, (1000000 - mu) / sigma, loc=mu, scale=sigma).rvs(1)[0]
beta_sampler_f = lambda a, b : lambda : np.random.beta(a, b)
gamma_sampler_f = lambda a, b : lambda : np.random.gamma(a, b)
uniform_sampler_f = lambda a, b : lambda : np.random.uniform(a, b)
uniform_int_sampler_f = lambda a, b : lambda : round(np.random.uniform(a, b))
def zipf_sampler_f(a, b, c):
    x = np.arange(b, c)
    weights = x ** (-a)
    weights /= weights.sum()
    return lambda : stats.rv_discrete(name='bounded_zipf', values=(x, weights)).rvs(1)
scaled_beta_sampler_f = lambda a, b, scale, minimum : lambda : minimum + round(beta_sampler_f(a, b)() * (scale - minimum))


def normalize_by_used_features_f(x, num_features_used, num_features, normalize_with_sqrt=False):
    if normalize_with_sqrt:
        return x / (num_features_used / num_features)**(1 / 2)
    return x / (num_features_used / num_features)


def order_by_y(x, y):
    order = torch.argsort(y if random.randint(0, 1) else -y, dim=0)[:, 0, 0]
    order = order.reshape(2, -1).transpose(0, 1).reshape(-1)#.reshape(seq_len)
    x = x[order]  # .reshape(2, -1).transpose(0, 1).reshape(-1).flip([0]).reshape(seq_len, 1, -1)
    y = y[order]  # .reshape(2, -1).transpose(0, 1).reshape(-1).reshape(seq_len, 1, -1)

    return x, y

def randomize_classes(x, num_classes):
    classes = torch.arange(0, num_classes, device=x.device)
    random_classes = torch.randperm(num_classes, device=x.device).type(x.type())
    x = ((x.unsqueeze(-1) == classes) * random_classes).sum(-1)
    return x

@torch.no_grad()
def sample_num_feaetures_get_batch(batch_size, seq_len, num_features, hyperparameters, get_batch, **kwargs):
    if hyperparameters.get('sample_num_features', True) and kwargs['epoch'] > 0: # don't sample on test batch
        num_features = random.randint(1, num_features)
    return get_batch(batch_size, seq_len, num_features, hyperparameters=hyperparameters, **kwargs)


class CategoricalActivation(nn.Module):
    def __init__(self, categorical_p=0.1, ordered_p=0.7
                 , keep_activation_size=False
                 , num_classes_sampler=zipf_sampler_f(0.8, 1, 10)):
        self.categorical_p = categorical_p
        self.ordered_p = ordered_p
        self.keep_activation_size = keep_activation_size
        self.num_classes_sampler = num_classes_sampler

        super().__init__()

    def forward(self, x):
        # x shape: T, B, H

        x = nn.Softsign()(x)

        num_classes = self.num_classes_sampler()
        hid_strength = torch.abs(x).mean(0).unsqueeze(0) if self.keep_activation_size else None

        categorical_classes = torch.rand((x.shape[1], x.shape[2])) < self.categorical_p
        class_boundaries = torch.zeros((num_classes - 1, x.shape[1], x.shape[2]), device=x.device, dtype=x.dtype)
        # Sample a different index for each hidden dimension, but shared for all batches
        for b in range(x.shape[1]):
            for h in range(x.shape[2]):
                ind = torch.randint(0, x.shape[0], (num_classes - 1,))
                class_boundaries[:, b, h] = x[ind, b, h]

        for b in range(x.shape[1]):
            x_rel = x[:, b, categorical_classes[b]]
            boundaries_rel = class_boundaries[:, b, categorical_classes[b]].unsqueeze(1)
            x[:, b, categorical_classes[b]] = (x_rel > boundaries_rel).sum(dim=0).float() - num_classes / 2

        ordered_classes = torch.rand((x.shape[1],x.shape[2])) < self.ordered_p
        ordered_classes = torch.logical_and(ordered_classes, categorical_classes)
        x[:, ordered_classes] = randomize_classes(x[:, ordered_classes], num_classes)

        x = x * hid_strength if self.keep_activation_size else x

        return x

class QuantizationActivation(torch.nn.Module):
    def __init__(self, n_thresholds, reorder_p = 0.5) -> None:
        super().__init__()
        self.n_thresholds = n_thresholds
        self.reorder_p = reorder_p
        self.thresholds = torch.nn.Parameter(torch.randn(self.n_thresholds))

    def forward(self, x):
        x = normalize_data(x).unsqueeze(-1)
        x = (x > self.thresholds).sum(-1)

        if random.random() < self.reorder_p:
            x = randomize_classes(x.unsqueeze(-1), self.n_thresholds).squeeze(-1)
        #x = ((x.float() - self.n_thresholds/2) / self.n_thresholds)# * data_std + data_mean
        x = normalize_data(x)
        return x

class NormalizationActivation(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, x):
        x = normalize_data(x)
        return x

class PowerActivation(torch.nn.Module):
    def __init__(self) -> None:
        super().__init__()
        #self.exp = torch.nn.Parameter(0.5 * torch.ones(1))
        self.shared_exp_strength = 0.5
        # TODO: Somehow this is only initialized once, so it's the same for all runs

    def forward(self, x):
        #print(torch.nn.functional.softplus(x), self.exp)
        shared_exp = torch.randn(1)
        exp = torch.nn.Parameter((shared_exp*self.shared_exp_strength + shared_exp * torch.randn(x.shape[-1])*(1-self.shared_exp_strength)) * 2 + 0.5).to(x.device)
        x_ = torch.pow(torch.nn.functional.softplus(x) + 0.001, exp)
        if False:
            print(x[0:3, 0, 0].cpu().numpy()
              , torch.nn.functional.softplus(x[0:3, 0, 0]).cpu().numpy()
              , x_[0:3, 0, 0].cpu().numpy()
              , normalize_data(x_)[0:3, 0, 0].cpu().numpy()
              , self.exp.cpu().numpy())
        return x_


def lambda_time(f, name='', enabled=True):
    if not enabled:
        return f()
    start = time.time()
    r = f()
    print('Timing', name, time.time()-start)
    return r


def pretty_get_batch(get_batch):
    """
    Genereate string representation of get_batch function
    :param get_batch:
    :return:
    """
    if isinstance(get_batch, types.FunctionType):
        return f'<{get_batch.__module__}.{get_batch.__name__} {inspect.signature(get_batch)}'
    else:
        return repr(get_batch)


class get_batch_sequence(list):
    '''
    This will call the get_batch_methods in order from the back and pass the previous as `get_batch` kwarg.
    For example for `get_batch_methods=[get_batch_1, get_batch_2, get_batch_3]` this will produce a call
    equivalent to `get_batch_3(*args,get_batch=partial(partial(get_batch_2),get_batch=get_batch_1,**kwargs))`.
    get_batch_methods: all priors, but the first, muste have a `get_batch` argument
    '''

    def __init__(self, *get_batch_methods):
        if len(get_batch_methods) == 0:
            raise ValueError('Must have at least one get_batch method')
        super().__init__(get_batch_methods)

    def __repr__(self):
        s = ',\n\t'.join([f"{pretty_get_batch(get_batch)}" for get_batch in self])
        return f"get_batch_sequence(\n\t{s}\n)"

    def __call__(self, *args, **kwargs):
        """

        Standard kwargs are: batch_size, seq_len, num_features
        This returns a priors.Batch object.
        """
        final_get_batch = self[0]
        for get_batch in self[1:]:
            final_get_batch = partial(get_batch, get_batch=final_get_batch)
        return final_get_batch(*args, **kwargs)