Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| from datetime import datetime | |
| from huggingface_hub import snapshot_download | |
| from src.backend.run_eval_suite import run_evaluation | |
| from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request | |
| from src.backend.sort_queue import sort_models_by_priority | |
| from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND,EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT | |
| from src.envs import QUEUE_REPO, RESULTS_REPO, API | |
| import logging | |
| import pprint | |
| # TASKS_HARNESS = [task.value.benchmark for task in Tasks] | |
| logging.getLogger("openai").setLevel(logging.WARNING) | |
| logging.basicConfig(level=logging.ERROR) | |
| pp = pprint.PrettyPrinter(width=80) | |
| PENDING_STATUS = "PENDING" | |
| RUNNING_STATUS = "RUNNING" | |
| FINISHED_STATUS = "FINISHED" | |
| FAILED_STATUS = "FAILED" | |
| snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) | |
| def run_auto_eval(): | |
| current_pending_status = [PENDING_STATUS] | |
| # pull the eval dataset from the hub and parse any eval requests | |
| # check completed evals and set them to finished | |
| check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS, | |
| failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, | |
| hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND) | |
| # Get all eval request that are PENDING, if you want to run other evals, change this parameter | |
| eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| # Sort the evals by priority (first submitted first run) | |
| eval_requests = sort_models_by_priority(api=API, models=eval_requests) | |
| print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests") | |
| if len(eval_requests) == 0: | |
| return | |
| eval_request = eval_requests[0] | |
| pp.pprint(eval_request) | |
| set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| # results = run_evaluation(eval_request=eval_request, task_names=TASKS_HARNESS, num_fewshot=NUM_FEWSHOT, | |
| # batch_size=1, device=DEVICE, no_cache=True, limit=LIMIT) | |
| TASKS_HARNESS = [task.value for task in Tasks] | |
| for task in TASKS_HARNESS: | |
| results = run_evaluation(eval_request=eval_request, task_names=[task.benchmark], num_fewshot=task.num_fewshot, | |
| batch_size=1, device=DEVICE, no_cache=True, limit=LIMIT) | |
| dumped = json.dumps(results, indent=2) | |
| print(dumped) | |
| output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{datetime.now()}.json") | |
| os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
| with open(output_path, "w") as f: | |
| f.write(dumped) | |
| API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", | |
| repo_id=RESULTS_REPO, repo_type="dataset") | |
| set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, | |
| local_dir=EVAL_REQUESTS_PATH_BACKEND) | |
| # breakpoint() | |
| if __name__ == "__main__": | |
| run_auto_eval() | |